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Abstract
Variance components should be estimated based on mean change when the mean of the observations drift

gradually over time. Consistent estimators for the variance components are studied for a particular modeling
situation with some underlying functions or drift. We propose a new variance estimator with Fourier estimation
of variations. The consistency of the proposed estimator is proved asymptotically. The proposed procedures
are studied and compared empirically with the variance estimators removing trends. The result shows that our
variance estimator has a smaller mean square error and depends on drift patterns. We estimate and apply the
variance to Nile River flow data and resting state fMRI data.

Keywords: fMRI data, fourier series, pseudoresiduals, m-dependent data, slowly varying func-
tions

1. Introduction

Variance parameters should be estimated accounting for the mean drift after the assumption of con-
stant means is violated in which the mean drifts. This paper presents methodology for variance esti-
mation to handle possible drift in the data. The motivating example involves a common psychological
experiment on human rhythmic and motor control. Ogden and Collier (2002) proposed a variance
estimator for tapping data with drift. The methods developed in this paper can be adapted to other
situations in which observations from a specified stationary time series model are suspected to demon-
strate drift in the mean, especially with fMRI data. In addition, the methods developed in this paper
can be applied to astronomy data in which the time between the maximum (or minimum) brightness
of stars is measured (see, Eddington and Plakidis (1929)). Astronomers model the data with the exact
model (as shown in Section 2); in addition, they are interested in testing for drift in intervals between
maximum brightness.

The problem in the classical approach to the estimation of variance parameters is the tendency
for subjects to drift from the starting tempo. For example, the simple sample variance estimator is
unbiased when there is no drift, but can be badly biased when there is drift present and the drift is
not considered. Drift is present in many of these experiments; therefore, some method is necessary to
account for drift when making an inference on these parameters.

This paper presents a new “drift-free” method for variance component estimation. Methodology
is established in this paper with the tapping experiment in mind; however, the techniques developed
can be adapted to any situation such as an explicit model for time series-type data.

Our approach can be applied to derive a variance estimator effective for a wide class of functions
with some type of drift.
1 Corresponding author: Department of Statistics, Duksung Women’s University, Seoul 10369, South Korea.

E-mail: jaehee@duksung.ac.kr

Published 31 January 2016 / journal homepage: http://csam.or.kr
c⃝ 2016 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



34 Jaehee Kim, Todd Ogden

2. Residual variance estimation with the drift effect

Consider a nonparametric regression model

yi = f (xi) + ϵi, (2.1)

where yi’s are observations, f is an unknown mean function and ϵi’s are independent and identically
distributed random errors with mean zero and variance σ2. The estimation of σ2 is an important
problem since it is essential to make inferences about the underlying function.

In this section, we review some variance estimators with nonparametric regression models.
Reinsh (1967) proposed choosing the curve that minimized

∑
(yi − f (xi))2 subject to∫ 1

0
{ f ′′(x)}2dx ≤ C.

This justification is to try to obtain the best possible fit to data subject to the curve with minimal local
variation as measured by its integrated squared second derivative.

One possible approach is to use the idea of differencing to remove trend. Rice (1984) proposed
the first-order difference-based estimator by

σ̂2
R =

1
2(n − 1)

n∑
i=2

(yi − yi−1)2. (2.2)

Gasser et al. (1986) used a similar idea to remove the local trend and proposed a second-order
difference-based estimator

σ̂2
GS J =

1
n − 2

n−1∑
i=2

c2
i ϵ̂

2
i , (2.3)

where ϵ̂i is the difference between yi and the value at xi of the line joining (xi−1, yi−1) and (xi+1, yi+1)
such as

ϵ̂i =
xi+1 − xi

xi+1 − xi−1
yi−1 +

xi − xi−1

xi+1 − xi−1
yi+1 − yi.

The coefficients ci are chosen such that E(c2
i ϵ̂

2
i ) = σ2 for all i when f is linear. For equidistance design

points, σ̂2
GS J is reduced to

σ̂2
GS J =

2
3(n − 2)

n−1∑
i=2

(
1
2

yi−1 − yi +
1
2

yi+1

)2

. (2.4)

Hall et al. (1990) introduced the estimator

σ̂2
HKT (m) =

1
m − n

n−m2∑
i=m1+1

 m2∑
k=−m1

diyk+i

2

, (2.5)

where m1 and m2 are nonnegative integers, m = m1 +m2 is referred to as the order, and the difference
sequence {di}i=−m1,...,m2 satisfies

∑m2
−m1

d j = 0,
∑m2
−m1

d2
j = 1 and d−m1 dm1 , 0.
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They provide optimal difference sequences for 1 ≤ m ≤ 10. Four decimals entries for each m are:

• m = 1 (−0.7071, −0.7071)

• m = 2 (0.8090, −0.5, −0.3090)

• m = 3 (0.1942, 0.2809, 0.3832, −0.8582)

• m = 4 (0.2708, −0.0142, 0.6909, −0.4858, −0.4617).

None of the above difference-based estimators achieves the asymptotic optimal rate for the mean
squared error (Dette et al., 1998) such as

MSE
(
σ̂2

)
=

1
n

Var
(
ϵ2

)
+ O

(
n−1

)
.

Buckley et al. (1988) considered the residual variance estimator as the minimax mean squared
error estimator and provided the optimal estimator which has the form

σ̂2
BES =

ytDy
tr(D)

, (2.6)

where D is a symmetric n×n matrix nonnegative-definite matrix satisfying the mean squared error and
y is a vector of yi’s. These estimators usually the residual sum of squares from some nonparametric
fit to f (Wahba, 1990). Or with the linear smoother A, ŷ = Ay and D = (I − A)t(I − A) (Hastie and
Tibshirani, 1990).

Chaudhuri (1992) compared Sarndal et al. (1989) and Kott (1990) variance estimators of a finite
population mean based on a simple random sample without replacement using regression estimator.

Müller et al. (2003) proposed the class of difference-based estimators

σ̂2
MS W =

1
2
∑

i, j Wi j

∑
i, j

Wi j(yi − y j)2, (2.7)

where the weights Wi j depend on the covariates only, but not on errors such as

Wi j ≥ 0, i, j = 1, . . . , n, i , j,

Wi j = W ji, i, j = 1, . . . , n, i , j,
1

n(n − 1)

∑∑
i, j

Wi j = 1.

σ̂2
MS W achieves the asymptotic optimal rate under certain assumptions for weights and constructed

weights based on a kernel density estimate.
Tong and Wang (2005) proposed the variance estimator as the intercept in a simple linear regres-

sion model with squared differences of paired observations as the dependent variable and squared
distances between paired covariates as the regressor, which achieves the optimal rate. Considering the
simple linear model

sk = α + βdk + ek,
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where dk = k2/n2 and for 1 ≤ k ≤ m < n sk =
∑n

i=k+1(yi − yi−k)2/{2(n − k)} is the average of (n − k)
lag-k differences. Assign weight wk = (n − k)/N to the observation sk, where N = (n − 1) + (n − 2) +
· · · + (n − m) = nm − m(m + 1)/2. Tong and Wang (2005) estimator is

σ̂2
TW = α̂ = s̄w − β̂d̄w (2.8)

which is unbiased when f is linear, where

β̂ =

∑m
k=1 wk sk

(
dk − dw

)
∑m

k=1 wk

(
dk − dw

)2 .

Recently Brown and Levine (2007) proposed a difference-based kernel estimators for the variance
function for both unknown mean function and unknown variance function.

3. Proposed variance estimator

In this section, we propose a variance estimator useful for underlying functions with some drift in-
cluding abrupt, smooth changes. Consider the variance function estimation with Fourier series with
difference estimates in model (2.1) where var(ϵi) = σ2

i . The difference estimated are defined as

ri =
1
2

(yi+1 − yi)2, i = 1, 2, . . . , n − 1. (3.1)

Fourier representation can be applied to si’s as

E[ri] = si = ϕ0 +

∞∑
j=1

ϕ jb j(i), i = 1, 2, . . . , n − 1,

where b j(i) are the orthogonal bases such as trigonometric basis functions. Therefore si can be ap-
proximated with the sample Fourier coefficients as

ŝi = ϕ̂0 +

K∑
j=1

ϕ̂ jb j(i), i = 1, 2, . . . , n − 1, (3.2)

where

ϕ̂ j =
1

n − 1

n−1∑
t=1

rtb j(t), j = 1, 2, . . . ,K. (3.3)

We propose the variance estimator as

σ̂2
J =

1
n − 1

n−1∑
i=1

ŝi. (3.4)

For smoothing and reducing the gap between discontinuous points, take an average of three ri’s
such as

r∗i =
1
3

(ri−1 + ri + ri+1) , i = 2, . . . , n − 1.
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And ŝ∗i is Fourier estimates with r∗i . Then the proposed variance estimator is

σ̂2
J3 =

1
n − 3

n−1∑
i=2

ŝ∗i . (3.5)

Kim and Hart (2011) used Fourier series for the mean change-point estimator and derived its
asymptotics. They used K = 1 for Fourier estimation. The choice of K turns out to have little impact
on the asymptotic results for σ̂2

J . For simplicity, proofs are given for the mean level change model
with K = 1. For general K the results follow in a similar way. If the model allows for nonconstancy
of f away from the discontinuity point, then the results continue to hold so long as f varies smoothly
away from this point. It follows that there exists β such that

| f (x) − f (y)| ≤ β|x − y|, for all x, y.

Theorem 1. Suppose E[ϵ4
i ] < ∞, for any a > 0

P
(∣∣∣σ̂2

J − σ2
∣∣∣ > a

)
→ 0 as n→ ∞ (3.6)

with

E
[
σ̂2

J

]
= σ2 + O

(
1
n2

)
, i = 1, 2, . . . , n − 1,

Var
[
σ̂2

J

]
=

1
4n

(
4E

[
ϵ4

]
+ 11σ4

)
+ O

(
1
n

)
.

Proof: We have

E
[
σ̂2

J

]
=

1
n − 1

n−1∑
i=1

E [ŝi] ,

E [ŝi] = E
[
ϕ̂0

]
+ E

[
ϕ̂ j

] √
2 cos πxi, i = 1, 2, . . . , n − 1.

When the underlying function is smooth with | f ′(x∗i )| < B bounded,

(yi+1 − yi) = f (xi+1) − f (xi) + (ϵi+1 − ϵi)
= f ′(x∗i )(xi+1 − xi) + (ϵi+1 − ϵi).

Since Cov(ϵi+1, ϵi) = 0, Var(ϵi) = σ2, and xi+1 − xi = 1/n,

E[ri] =
1
2

E
[
(yi+1 − yi)2

]
=

1
2n2

∣∣∣ f ′ (x∗i )∣∣∣2 + σ2 = σ2 + O
(

1
n2

)
.

Take the expectation as

E
[
ϕ̂0

]
= E

1
n

n∑
i=1

ri

 = 1
n

n∑
i=1

E[ri] = σ2 + O
(

1
n2

)
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and

E
[
ϕ̂1

]
=

1
n

n∑
i=1

E[ri]
√

2 cos πxi

= σ2 1
n

n∑
i=1

√
2 cos πxi + O

(
1
n2

)
≈ O

(
1
n2

)
since

1
n

n∑
i=1

√
2 cos πxi ≈

√
2
∫ 1

0
cos πxdx = 0.

Therefore we have

E[ŝi] = σ2 + O
(

1
n2

)
, i = 1, 2, . . . , n − 1,

and

E
[
σ̂2

J

]
= σ2 + O

(
1
n2

)
.

Consider the variance of σ̂2
J . Let ϵ = ϵi for some i. First, calculate

Var
[
ϕ̂0

]
=

1
n2

n∑
i=1

Var[ri] +
1
n2

∑
i< j

Cov
(
ri, r j

)
=

1
n2

n∑
i=1

Var[ri] +
2
n2

∑
j=i+1

Cov(ri, ri+1)

=
1
n

(
E

[
ϵ4

]
+

5
2
σ4

)
+ O

(
1
n2

)
since

E
[
r2

i

]
=

1
4

E
[
(yi+1 − yi)4

]
=

1
4

 f ′(x∗i )4

n4 + 2E
[
ϵ4

]
+ 6σ4


=

1
2

(
E

[
ϵ4

]
+ 3σ4

)
+ O

(
1
n4

)
,

and

Var[ri] = E
[
r2

i

]
− E[ri]2

=
1
2

(
E

[
ϵ4

]
+ σ4

)
+ O

(
1
n2

)
.



Variance components estimation in the presence of drift 39

Cov
(
ri, r j

)
=

1
4

E
[
(yi+1 − yi)2(yi − yi−1)2

]
=


1
4

E
[
ϵ4

]
+ σ4 + O

(
1
n2

)
, j = i − 1, i = 1,

0, | j − i| > 1.

For the variance of the first sample Fourier coefficient,

Var
[
ϕ̂1

]
=

2
n2

n∑
i=1

Var[ri] cos2 πxi + 4
∑
i< j

cos2 πxi cos2 πx jCov
(
ri, r j

)
=

1
2n

(
E

[
ϵ4

]
+ σ4

)
+ 4

2
n2

∑
j=i+1

cos2 πxi cos2 πx j + O
(

1
n

)
+ O

(
1
n2

)

=
1
2n

(
E

[
ϵ4

]
+ σ4

)
+ O

(
1
n

)
+ O

(
1
n2

)
,

and

Var [ŝi] = Var
[
ϕ̂0

]
+ 2 cos2 πxiVar

[
ϕ̂1

]
+
√

2 cos πxiCov
(
ϕ̂0, ϕ̂1

)
=

1
n

(
E

[
ϵ4

]
+

5
2
σ4

)
+ 2 cos2 πxi

1
2n

(
E

[
ϵ4

]
+ σ4

)
O

(
1
n

)
.

Therefore

Var
[
σ̂2

J

]
= E


 1

n − 1

n−1∑
i=1

ŝi


2

=
1

(n − 1)2

n−1∑
i=1

Var (ŝi) +
1

(n − 1)2

n−1∑
i< j

2Cov
(
ŝi, ŝ j

)
=

σ2

n − 1
+ O

(
1
n

)
= O

(
1
n

)
.

For any a > 0, use Markov inequality such as

P
(∣∣∣σ̂2

J − σ2
∣∣∣ ≥ a

)
≤

Var
(
σ̂2

J

)
a2

= O
(

1
n

)
.

Therefore σ̂2
J is a consistent estimator of σ2 as n → ∞. For consistency, a similar procedure can be

done for σ̂2
J3. �
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4. Simulation

We conducted simulations to investigate the behavior of the proposed change-point estimator. Data
were generated from various change-point models with i.i.d. normal errors having mean 0 and vari-
ance σ2 = 1, and the design points xi = i/n, i = 1, . . . , n. The models considered are in:

yi = f (xi) + ϵi, i = 1, . . . , n,

(1) One step up function

f (t) =
{

0, 0 ≤ x ≤ 0.5,
2, 0.5 < x ≤ 1.

(2) Linear function

f (t) = 5x.

(3) Quadratic function

f (t) = 3x2.

(4) Quadratic and linear function

f (t) =
{

5x2, 0 ≤ x ≤ 0.5,
2 + x2, 0.5 < x ≤ 1.

(5) Cyclic smooth cosine function

f (t) = cos(8π(0.5 − x)), 0 ≤ x ≤ 1.

(6) Cyclic smooth sine function

f (t) = 5 sin(2πx).

(7) Exponential function

f (t) = 2 exp
(
−4(4x − 1)2

)
+ 6 exp

(
−16(4x − 3)2

)
, 0 ≤ x ≤ 1.

(8) Two step change function

f (t) =


5x, 0 ≤ x ≤ 0.3,
1.5 − 5x, 0.3 < x ≤ 0.7.
4x, 0.7 < x ≤ 1.

A sample size of n = 100 was used in all cases, and 1,000 repetitions were performed for each set.
We computed variance estimators with their variances and MSEs. Table 1 shows that the proposed
variance estimator has smaller MSEs when there is drift including cycle or two step changes for
underlying functions and provides similar MSEs in other models. Therefore our estimator can be
an alternative for the variance estimation for nonparametric regression models that include functions
with some drift or trend.
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Table 1: Comparison of variance estimators in 1,000 repetitions with the sample size n = 100

Statistic Model (1) Model (2)
Estimator Mean Sd MSE Lower Upper Mean Sd MSE Lower Upper

σ̂2
R 1.029 0.179 0.032 0.702 1.390 0.998 0.174 0.030 0.691 1.357

σ̂2
GS J 1.022 0.203 0.041 0.669 1.450 0.997 0.198 0.039 0.656 1.411

σ̂2
HKT (m = 2) 1.040 0.167 0.028 0.751 1.375 0.998 0.161 0.026 0.715 1.328

σ̂2
HKT (m = 3) 1.051 0.172 0.030 0.759 1.389 0.995 0.152 0.023 0.713 1.312

σ̂2
TW (m =

√
n) 1.051 0.165 0.027 0.779 1.371 0.996 0.162 0.026 0.703 1.343

σ̂2
TW (m = n1/3) 1.034 0.168 0.028 0.740 1.384 0.998 0.197 0.039 0.658 1.405

σ̂2
TW (m = 2) 1.021 0.202 0.041 0.661 1.440 0.977 0.174 0.030 0.672 1.333

σ̂2
J,K=1 1.009 0.176 0.031 0.689 1.380 0.977 0.174 0.030 0.672 1.333

σ̂2
J3,K=1 1.002 0.175 0.030 0.685 1.377 0.970 0.174 0.030 0.672 1.325

Statistic Model (3) Model (4)
Estimator Mean Sd MSE Lower Upper Mean Sd MSE Lower Upper

σ̂2
R 1.004 0.181 0.033 0.688 1.369 0.999 0.176 0.031 0.690 1.375

σ̂2
GS J 1.002 0.205 0.042 0.647 1.417 0.996 0.204 0.042 0.653 1.452

σ̂2
HKT (m = 2) 1.006 0.167 0.028 0.713 1.375 1.003 0.159 0.025 0.718 1.352

σ̂2
HKT (m = 3) 1.016 0.169 0.029 0.721 1.380 1.014 0.161 0.026 0.725 1.366

σ̂2
TW (m =

√
n) 1.002 0.157 0.025 0.723 1.330 1.006 0.152 0.023 0.730 1.325

σ̂2
TW (m = n1/3) 1.003 0.166 0.028 0.711 1.362 1.001 0.161 0.026 0.709 1.347

σ̂2
TW (m = 2) 1.003 0.205 0.042 0.646 1.413 0.996 0.203 0.041 0.654 1.444

σ̂2
J,K=1 0.983 0.180 0.032 0.667 1.351 0.978 0.176 0.031 0.671 1.363

σ̂2
J3,K=1 0.977 0.180 0.032 0.662 1.339 0.972 0.177 0.031 0.669 1.355

Statistic Model (5) Model (6)
Estimator Mean Sd MSE Lower Upper Mean Sd MSE Lower Upper

σ̂2
R 1.011 0.172 0.030 0.689 1.355 1.021 0.173 0.030 0.716 1.388

σ̂2
GS J 0.995 0.198 0.039 0.635 1.402 0.997 0.197 0.039 0.655 1.438

σ̂2
HKT (m = 2) 1.034 0.160 0.026 0.742 1.347 1.055 0.165 0.027 0.768 1.383

σ̂2
HKT (m = 3) 1.045 0.164 0.027 0.750 1.361 1.066 0.170 0.029 0.776 1.398

σ̂2
TW (m =

√
n) 1.070 0.167 0.028 0.774 1.366 1.024 0.154 0.024 0.741 1.350

σ̂2
TW (m = n1/3) 1.002 0.156 0.024 0.709 1.318 0.999 0.158 0.025 0.699 1.338

σ̂2
TW (m = 2) 0.995 0.197 0.039 0.635 1.389 0.998 0.197 0.039 0.656 1.432

σ̂2
J,K=1 0.991 0.170 0.029 0.676 1.342 0.999 0.169 0.028 0.687 1.355

σ̂2
J3,K=1 0.984 0.169 0.029 0.670 1.328 0.992 0.168 0.028 0.684 1.349

Statistic Model (7) Model (8)
Estimator Mean Sd MSE Lower Upper Mean Sd MSE Lower Upper

σ̂2
R 1.039 0.176 0.031 0.717 1.403 1.136 0.239 0.057 0.795 1.552

σ̂2
GS J 1.002 0.196 0.038 0.641 1.417 1.092 0.240 0.058 0.696 1.589

σ̂2
HKT (m = 2) 1.096 0.185 0.034 0.806 1.431 1.206 0.278 0.077 0.890 1.612

σ̂2
HKT (m = 3) 1.107 0.192 0.037 0.814 1.445 1.219 0.289 0.083 0.900 1.629

σ̂2
TW (m =

√
n) 1.151 0.214 0.046 0.874 1.455 1.287 0.345 0.119 0.944 1.691

σ̂2
TW (m = n1/3) 1.017 0.158 0.025 0.724 1.359 1.168 0.253 0.064 0.849 1.570

σ̂2
TW (m = 2) 1.001 0.196 0.038 0.650 1.412 1.090 0.238 0.057 0.700 1.572

σ̂2
J,K=1 1.018 0.170 0.029 0.702 1.380 1.116 0.226 0.051 0.788 1.539

σ̂2
J3,K=1 1.012 0.168 0.028 0.696 1.374 1.110 0.222 0.050 0.774 1.534

5. Applications

We applied the variance component methods to some real data sets. Table 1 provides the estimation
results. The techniques derived in this paper were applied to Nile River flow data from 1871 to 1970
(Figure 2). The sample variance that does not account for drift, is σ̂2

NileRiver = 28637.95 which seems
overestimated. Table 2 gives the variance estimates of Nile River data and shows that the variance
considering trend is necessary.
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Table 2: Comparison of variance estimators for real data

Data Nile River flow fMRI: brain R1 fMRI: brain R10
Sample size n = 100 n = 2048 n = 2048

σ̂2 28637.95 59.067 200.479
σ̂2

R 13998.77 33.748 120.164
σ̂2

GS J 13206.36 29.434 110.023
σ̂2

HKT (m = 2) 15531.97 39.434 135.490
σ̂2

HKT (m = 3) 15692.10 39.454 135.556
σ̂2

TW (m =
√

n) 17404.00 51.943 174.491
σ̂2

TW (m = n1/3) 15228.11 48.340 155.452
σ̂2

TW (m = 2) 13023.64 29.943 109.957
σ̂2

J,K=1 13998.77 33.670 120.145
σ̂2

J3,K=1 13921.91 33.669 120.031

fMRI = functional magnetic resonance imaging
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Figure 1: The true underlying functions (solid lines) with a typical simulated data set of size n = 100 and variance
σ2 = 1.

Recent attention has been devoted to investigating fMRI in neuroimaging for brain activity and
connectivity patterns over time. Logothetis et al. (2001) provide a neurophysiological investigation
of the basis of the fMRI signal for brain function. The fMRI data has some fluctuation according to
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stimuli or disease. Several change point methods have been proposed for fMRI signals (Lindquist et
al., 2007, 2014). Were acquired functional magnetic resonance imaging (fMRI) time series data from
five healthy volunteers in the resting state to estimate functional connectivity between 90 cortical and
subcortical regions. Volunteers had no personal history of neurologic or psychiatric disorders and
were not abusing alcohol or illicit drugs.

Each participant was scanned on a single occasion, lying quietly at rest with eyes closed for 37
min, 44 s. Gradient-echo echoplanar imaging (EPI) data depicting blood oxygen level-dependent
(BOLD) contrast were acquired using a Med Spec S300 scanner (Bruker Medical, Ettlingen, Ger-
many) operating at 3.0T in the Wolfson Brain Imaging Centre (Cambridge, UK).

We selected region 1 (R1; precuneus) and region 10 (R10; dorsal cingulate gyrus) for variance
estimation to give an example. Achard et al. (2006) previously studied functional connectivity with
these data. Table 2 shows that the variance with trend correction is smaller than simple sample vari-
ance. The variance of R10 is also bigger than R1 since R10 has more variability due to regional
characteristics; in addition, it might be more biased since the sample variance (without considering
the underlying function) is bigger than other variance estimates.

Our proposed method can reflect the underlying function and can be used for variance component
especially without little information about the underlying functions.

6. Concluding remarks

This paper develops one possible solution to the inference problem considered when estimating vari-
ance components. The proposed estimator is based on some method of nonparametric regression or
“smoothing” with Fourier series estimation. The primary advantage of taking such an approach is the
simplicity that can be quickly coded and a straightforward explanation to scientists. It can also be
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Figure 3: Functional magnetic resonance imaging (fMRI) data from brain region R1 (upper) and fMRI data from
brain R10 (lower).

applied to similar models such as regressions. We expect further research on variance and covariance
with the time series data incorporation the dependency.
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