• Title/Summary/Keyword: mc-Si

Search Result 104, Processing Time 0.029 seconds

Investigation of Isotropic Etching of Multicrystalline Silicon Wafers with Acid solution (Acid solution을 이용한 다결정 실리콘 기판의 등방성 에칭에 관한 연구)

  • Kim, Ji-Sun;Kim, Bum-Ho;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.70-71
    • /
    • 2007
  • Multicrystalline silicon(mc-Si) solar cells are steadily increasing their share of the PV market due to the lower material costs. However, commercial mc-Si solar cells have lower efficiency than singlecrystalline silicon solar cells. To improve efficiency of mc-Si solar cells, it is important to reduce optical losses from front surface reflection. Isotropic etching with acid solution based on hydrofluoric acid(HF) and nitric acid$(HNO_3)$ is one of the promising methods that can reduce surface reflectance for mc-Si solar cells. Anisotropic etching is not suitable for mc-Si because of its various grain orientations. In this paper, we isotropically etched mc-Si using acid solution. After that, etched surface was observed by Scanning Electron Microscope(SEM) and surface reflectance was measured. We obtained 29.29% surface reflectance by isotropic etching with acid solution in wavelength from 400nm to 1000nm for fabrication of mc-Si solar cells.

  • PDF

Fabrication and Characteristics of Magnetic Tunneling Transistors using the Amorphous n-Type Si Films (비정질 n형 Si 박막을 이용한 자기터널링 트랜지스터 제작과 특성)

  • Lee, Sang-Suk;Lee, Jin-Yong;Hwang, Do-Guwn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.276-283
    • /
    • 2005
  • Magnetic tunneling transistor (MTT) device using the amorphous n-type Si semiconductor film for base and collector consisting of the [CoFe/NiFe](free layer) and Si(top layer) multilayers was used to study the spin-dependent hot electron magnetocurrent (MC) and tunneling magnetoresistance (TMR) at room temperature. A large MC of 40.2 % was observed at the emitter-base bias voltage ( $V_{EB}$ ) of 0.62 V. The increasing emitter hot current and transfer ratio ( $I_{C}$/ $I_{E}$) as $V_{EB}$ are mainly due to a rapid increase of the number of conduction band states in the Si collector. However, above the $V_{EB}$ of 0.62 V, the rapid decrease of MC was observed in amorphous Si-based MTT because of hot electron spin-dependent elastic scattering across CoFe/Si interfaces.

Relative Magneto-current of Magnetic Tunnel Transistor with Amorphous n-type Si Film

  • Lee, Sang-Suk;Lee, Jin-Yong;Hwang, Do-Guwn
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.23-26
    • /
    • 2004
  • A magneto-current (MC) was investigated for magnetic tunnel transistor (MTT) with amorphous n-type Si film. A relative MC (more than 49.6%) was observed at an emitter-base bias voltage ($V_{EB}$) of 0.65 V at room temperature. Above a $V_{EB}$ of 0.70 V, however, a rapid decrease in MC was observed in the amorphous Si-based MTT. The collector current increasing and transfer ratio as emitter-base voltage were mainly due to the rapid creation electrons of conduction band states in the Si collector. This approach would make integration in various components and systems easier than a MTT grown on a semiconductor wafer.

A New Record of the Genus Ectopsocus McLachlan, 1899 (Psocodea: Ectopsocidae) from South Korea (한국의 미기록속 Ectopsocus McLachlan, 1899 (다듬이목: 외다듬이벌레과)의 보고 )

  • Jaeyun Kim;Ki-Jeong Hong;Wonhoon Lee
    • Korean journal of applied entomology
    • /
    • v.62 no.2
    • /
    • pp.109-112
    • /
    • 2023
  • The genus Ecopsocus is recorded from Korea for the first time with E. briggsi McLachlen, 1899. This species was collected on southern regions, Geoje-si, Jinju-si, Ulsan-si, and Jeju-do, in Korea. In this study, illustration of diagnostic characters of E. briggsi is provided.

Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell (다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구)

  • Kim, Myeong-Hyun;Song, Jae-Won;Nam, Yoon-Ho;Kim, Dong-Hyung;Yu, Si-Young;Moon, Hwan-Gyun;Yoo, Bong-Young;Lee, Jung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.

Investigation of Lithium Transference Number in PMMA Composite Polymer Electrolytes Using Monte Carlo (MC) Simulation and Recurrence Relation

  • Koh, Renwei Eric;Sun, Cha Chee;Yap, Yee Ling;Cheang, Pei Ling;You, Ah Heng
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • In this study, Monte Carlo (MC) simulation is conducted with recurrence relation to study the effect of SiO2 with different particle size and their roles in enhancing the ionic conductivity and lithium transference number of PMMA composite polymer electrolytes (CPEs). The MC simulated ionic conductivity is verified with the measurements from Electrochemical Impedance Spectroscopy (EIS). Then, the lithium transference number of CPEs is calculated using recurrence relation with the MC simulated current density and the reference transference number obtained. Incorporation of micron-size SiO2 (≤10 ㎛) fillers into the mixture improves the ionic conductivity from 8.60×10-5 S/cm to 2.35×10-4 S/cm. The improvement is also observed on the lithium transference number, where it increases from 0.088 to 0.3757. Furthermore, the addition of nano-sized SiO2 (≤12 nm) fillers further increases the ionic conductivity up towards 3.79×10-4 S/cm and lithium transference number of 0.4105. The large effective surface area of SiO2 fillers is responsible for the improvement in ionic conductivity and the transference number in PMMA composite polymer electrolytes.

The relationship between minority carrier life time and structural defects in silicon ingot grown with single seed

  • Lee, A-Young;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Among the various possible factors affecting the Minority Carrier Life Time (MCLT) of the mc-Si crystal, dislocations formed during the cooling period after solidification were found to be a major element. It was confirmed that other defects such as grain boundary or twin boundary were not determinative defects affecting the MCLT because most of these defects seemed to be formed during the solidification period. With a measurement of total thickness variation (TTV) and bow of the silicon wafers, it was found that residual stress remaining in the mc-Si crystal might be another major factor affecting the MCLT. Thus, it is expected that better quality of mc-Si can be grown when the cooling process right after solidification is carried out as slow as possible.

Influence of PECVD SiNx Layer on Multicrystalline Silicon Solar Cell (PECVD SiNx 박막의 다결정 실리콘 태양전지에 미치는 영향)

  • Kim, Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.662-666
    • /
    • 2005
  • Silicon nitride $(SiN_x)$ film is a promising material for anti-reflection coating and passivation of multicrystalline silicon (me-Si) solar cells. In this work, a plasma-enhanced chemical vapor deposition (PECVD) system with batch-type reactor tube was used to prepare highly robust $SiN_x$ films for screen-printed mc-Si solar cells. The Gas flow ratio, $R=[SiH_4]/[NH_3]$, in a mixture of silane and ammonia was varied in the range of 0.0910.235 while maintaining the total flow rate of the process gases to 4,200 sccm. The refractive index of the $SiN_x$ film deposited with a gas flow ratio of 0.091 was measured to be 2.03 and increased to 2.37 as the gas flow ratio increased to 0.235. The highest efficiency of the cell was $14.99\%$ when the flow rate of $SiH_4$ was 350 sccm (R=0.091). Generally, we observed that the efficiency of the mc-Si solar cell decreased with increasing R. From the analysis of the reflectance and the quantum efficiency of the cell, the decrease in the efficiency was shown to originate mainly from an increase in the surface reflectance for a high flow rate of $SiH_4$ during the deposition of $SiN_x$ films.

Study of On-chip Liquid Cooling in Relation to Micro-channel Design (마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.