• Title/Summary/Keyword: maximum-efficiency tracking

Search Result 211, Processing Time 0.027 seconds

Maximum-Efficiency Tracking Scheme for Piezoelectric-Transformer Inverter with Dimming Control

  • Nakashima Satoshi;Ogasawara Hiroshi;Kakehashi Hidenori;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.7-10
    • /
    • 2001
  • This paper provides a solution for the problem of efficiency decrease caused by load variation. A novel control scheme of tracking the PT's operation frequency for the maximum efficiency is proposed. As a result, a high efficiency over $80\%$ has been achieved even under the output-current decrease down to $10\%$ of the full load current.

  • PDF

Maximum Efficiency Point Tracking Control Algorithm for Improving Electric Power Transmission Efficiency between Photovoltaic Power Generating system and the Grid (태양광발전시스템과 계통간의 전력 전송 효율 개선을 위한 최대효율점 추적 제어 알고리즘)

  • Kwon, Cheol-Soon;Kim, Kwang Soo;Do, Tae Young;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • It proposes an efficient control algorithm to increase electric power transmission efficiency between photovoltaic power generating system and the grid. The main controller finds a maximum efficiency condition by considering the quantity of power generated from PV arrays, the number of inverters, and efficiency of PV inverter. According to the condition, a relay board arranges a point of contract of PV arrays. By the disposition of PV arrays, it assigns the optimized power on each PV inverter. Operational principle of the proposed maximum efficiency point tracking algorithm is given in detail. To verify the validity of the proposed approach, computer-aided simulation and experiment carried out.

A Study on the New Maximum Power Point Tracking and Current Ripple Reduction of Solar Cell for the Grid-connected PV Inverter (계통연계형 태양광 인버터의 새로운 최대 전력점 추종과 태양전지의 전류리플 감소에 관한 연구)

  • Hwang, Uiseon;Kang, Moonsung;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1187-1195
    • /
    • 2013
  • Photovoltaic inverters should always track the maximum power of solar cell arrays in operation. Also, they should be irrespective of the maximum power point voltage of a wide range of solar cells in tracking the maximum power point. If the current ripple of solar cells occurs, the function of maximum power point tracking drops, and normal tracking is difficult when solar radiation or the maximum power point changes. To solve this problem, this paper proposed a new maximum power point tracking algorithm with high efficiency and an algorithm to reduce the current ripple of solar cells. According to the results from the test on 4KW grid-connected PV inverter, the efficiency of maximum power point tracking and inverter output and the total harmonic distortion of inverter output current showed 99.97%, 97.5% and 1.05% respectively. So, the inverter showed excellent performance, and made possible stable maximum power point tracking operation when the solar radiation rapidly changed from 100% to 10% and from 10% to 100% for 0.5 seconds.

Comparison Study of Maximum Power Point Tracking Control with Changing of Radiation (일사량 변화에 대한 최대전력점 추종 제어의 비교 연구)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1075-1082
    • /
    • 2010
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

The Optimal Tracking Error of Active Stock Fund by Smart Beta Strategy (스마트 베타 전략에 따른 액티브 주식형 펀드의 최적 추적오차)

  • Jae-Hyun Lee
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.163-175
    • /
    • 2022
  • Purpose - This study introduces a methodology for finding the optimal tracking error of active stock funds. Tracking error is commonly used in risk budgeting techniques as a concept of cost for alpha creation. Design/methodology/approach - This study uses a post-optimal smart beta portfolio that maximizes alpha under the given tracking error constraint. Findings - As a result of the analysis, the smart beta strategy that maximized alpha under the constraint of 0.15% daily tracking error shows the highest IR. This means the maximum theoretically achievable efficiency. In this regard, a fixed-effect panel regression analysis is conducted to evaluate the active efficiency of domestic stock funds. In addition to control variables based on previous studies, the effect of tracking error on alpha is analyzed. The alpha used in this model is calculated using the smart beta portfolio according to the size of the constraint of the tracking error as a benchmark. Contrary to theoretical estimates, in Korea, the alpha performance is maximized under a daily tracking error of 0.1%. This indicates that the active efficiency of domestic equity funds is lower than the theoretical maximum. Research implications or Originality - Based on this study, it is expected that it can be used for active risk management of pension funds and performance evaluation of active strategies.

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

Configuration of PV System for Improved Efficientcy Using PV Current Control of MPPT (PV 전류를 이용한 최대전력점 추적방식의 태양광 발전 시스템 개발)

  • Yoo, Yang-Woo;Seo, Deok-Hyun;Kim, Yoo-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.31-38
    • /
    • 2014
  • Maximum power point tracking method is very important to enhance efficiency of photovoltaic system. Meanwhile a lot of research about MPPT has been studied and developed new one better than a method of the past. This paper deals with Perturb and Observation that are most commonly used. Tracking parameter changed PV voltage for PV current and it was simulated with P-SIM program. The P&O tracking method to use current for parameter lows ripple rate of output and enhances response rate of tracking. Through this study, it has been demonstrated that method using current for tracking parameter is effective.

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

Study on the method for calculating of optimal passive elements values in Maximum Solar Energy Tracking System (Maximum Solar Energy Tracking System에서의 최적정수산정에 관한 연구)

  • Hwang, Young-Moon;Baek, Byung-San;Sung, Baek-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.425-429
    • /
    • 1990
  • In order to spread the practical utilization of solar energy, it depends upon how we can increase the efficiency of solar energy conversion system. This paper describes the method for calculating of optimal passive elements values in Maximum Solar Energy Tracking System. And experimental results with those calculated values are presented.

  • PDF

The New MPPT Algorithm for the Dynamic MPPT Efficiency (다이나믹 MPPT를 적용한 최대전력지점추종 알고리즘)

  • Ko, Suk-Whan;Jung, Young-Seok;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • The efficiency of the maximum power point tracking(MPPT) of inverter which is used in grid-connected photovoltaic systems is changed according to dynamic environment conditions. Hence, this paper evaluates the performance of the proposed method and other MPPT algorithm on the basis of European Efficiency Test(EN50530). The modeling of MPPT algorithm is made by the Matlab & Simulink. In the result of simulation, the more control period is shorter, the more MPPT efficiency is higher. Also, the Proposed MPPT algorithm has higher performance than other MPPT algorithm with no regard to control period.