• Title/Summary/Keyword: maximum posterior estimator

Search Result 17, Processing Time 0.023 seconds

Objective Bayesian inference based on upper record values from Rayleigh distribution

  • Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • The Bayesian approach is a suitable alternative in constructing appropriate models for observed record values because the number of these values is small. This paper provides an objective Bayesian analysis method for upper record values arising from the Rayleigh distribution. For the objective Bayesian analysis, the Fisher information matrix for unknown parameters is derived in terms of the second derivative of the log-likelihood function by using Leibniz's rule; subsequently, objective priors are provided, resulting in proper posterior distributions. We examine if these priors are the PMPs. In a simulation study, inference results under the provided priors are compared through Monte Carlo simulations. Through real data analysis, we reveal a limitation of the appropriate confidence interval based on the maximum likelihood estimator for the scale parameter and evaluate the models under the provided priors.

The inference and estimation for latent discrete outcomes with a small sample

  • Choi, Hyung;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.131-146
    • /
    • 2016
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for longitudinal data. Latent class profile analysis (LCPA) is an useful method to study sequential patterns of the behavioral development by the two-step identification process: identifying a small number of latent classes at each measurement occasion and two or more homogeneous subgroups in which individuals exhibit a similar sequence of latent class membership over time. Maximum likelihood (ML) estimates for LCPA are easily obtained by expectation-maximization (EM) algorithm, and Bayesian inference can be implemented via Markov chain Monte Carlo (MCMC). However, unusual properties in the likelihood of LCPA can cause difficulties in ML and Bayesian inference as well as estimation in small samples. This article describes and addresses erratic problems that involve conventional ML and Bayesian estimates for LCPA with small samples. We argue that these problems can be alleviated with a small amount of prior input. This study evaluates the performance of likelihood and MCMC-based estimates with the proposed prior in drawing inference over repeated sampling. Our simulation shows that estimates from the proposed methods perform better than those from the conventional ML and Bayesian method.

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.

Multinomial Group Testing with Small-Sized Pools and Application to California HIV Data: Bayesian and Bootstrap Approaches

  • Kim, Jong-Min;Heo, Tae-Young;An, Hyong-Gin
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2006.06a
    • /
    • pp.131-159
    • /
    • 2006
  • This paper consider multinomial group testing which is concerned with classification each of N given units into one of k disjoint categories. In this paper, we propose exact Bayesian, approximate Bayesian, bootstrap methods for estimating individual category proportions using the multinomial group testing model proposed by Bar-Lev et al (2005). By the comparison of Mcan Squre Error (MSE), it is shown that the exact Bayesian method has a bettor efficiency and consistency than maximum likelihood method. We suggest an approximate Bayesian approach using Markov Chain Monte Carlo (MCMC) for posterior computation. We derive exact credible intervals based on the exact Bayesian estimators and present confidence intervals using the bootstrap and MCMC. These intervals arc shown to often have better coverage properties and similar mean lengths to maximum likelihood method already available. Furthermore the proposed models are illustrated using data from a HIV blooding test study throughout California, 2000.

  • PDF

A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes (베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구)

  • Park, Yuha;Choi, Ilsu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2017
  • Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.

Nonignorable Nonresponse Imputation and Rotation Group Bias Estimation on the Rotation Sample Survey (무시할 수 없는 무응답을 가지고 있는 교체표본조사에서의 무응답 대체와 교체그룹 편향 추정)

  • Choi, Bo-Seung;Kim, Dae-Young;Kim, Kee-Whan;Park, You-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.361-375
    • /
    • 2008
  • We propose proper methods to impute the item nonresponse in 4-8-4 rotation sample survey. We consider nonignorable nonresponse mechanism that can happen when survey deals with sensitive question (e.g. income, labor force). We utilize modeling imputation method based on Bayesian approach to avoid a boundary solution problem. We also estimate a interview time bias using imputed data and calculate cell expectation and marginal probability on fixed time after removing estimated bias. We compare the mean squared errors and bias between maximum likelihood method and Bayesian methods using simulation studies.

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF