DOI QR코드

DOI QR Code

A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes

베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구

  • Park, Yuha (Department of Statistics, Chonnam University) ;
  • Choi, Ilsu (Department of Statistics, Chonnam University)
  • Received : 2016.12.25
  • Accepted : 2017.01.19
  • Published : 2017.01.31

Abstract

Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.

전염병 확산에 대한 확률과정모형으로 활용되는 분기과정은 실제 데이터를 통해 모수를 추정할 수 있다는 장점이 있다. 음이항 분포를 분기과정의 생산 분포 모형으로 적용할 수 있는데 음이항 분포를 적용하기 위해서는 평균과 산포 모수를 추정하여야한다. 기존의 생물학 연구와 역학 연구 분야에서는 이를 최대우도법을 이용하여 추정하고 있다. 그러나 대부분의 역학 자료의 특성상 분기과정에서 이용되는 음이항 분포는 소표본이어서 최대우도 추정량의 정도를 충족시킬 수 없다. 본 논문에서는 소표본 자료에서 좋은 통계량의 성질을 만족한다고 알려져 있는 베이지안을 이용하여 모수를 추정하는 방법을 제안한다. 2015년 국내 메르스 사례에 베이지안 방법을 적용하여 모수를 추정하고 사후 분포를 적합하였다. 그 결과 어떠한 사전 분포를 가정하더라도 안정적으로 모수를 추정하는 것을 알 수 있었다. 추정된 산포 모수를 이용하여 분기과정에서의 전염병 소멸 확률을 유도하였다.

Keywords

References

  1. Alexander, H. K. (2010). Modelling pathogen evolution with branching processes, Master Thesis, Queen's University, Ontario.
  2. Anderson, R. M., Fraser, C., Ghani, A. C., Donnelly, C. A., Riley, S., Ferguson, N. M., Leung, G. M., Lam, T. H. and Hedley, A. J. (2004). Epidemiology, transmission dynamics and control of SARS: The 2002-2003 epidemic. Philosophical Transactions of the Royal Society B, 359, 1091-1105. https://doi.org/10.1098/rstb.2004.1490
  3. Anscombe, F. J. (1950). Sampling theory of the negative binomial and logarithmic series distributions. Biometrika, 37, 358-382. https://doi.org/10.1093/biomet/37.3-4.358
  4. Choi, I. and Rhee, S-S. (2015). A transmission distribution estimation for real time Ebola virus disease epidemic model. Journal of the Korean Data & Information Science Society, 26, 161-168. https://doi.org/10.7465/jkdi.2015.26.1.161
  5. Dye, C. and Gay, N. (2003). Modeling the SARS epidemic. Science, 300, 1884-1885. https://doi.org/10.1126/science.1086925
  6. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457-511. https://doi.org/10.1214/ss/1177011136
  7. Haccou, P., Jagers, P. and Vatutin, V. A. (2005). Branching processes: Variation, growth, and extinction of populations, Cambridge University Press, New York.
  8. Hoff, P. D. (2009). A first course in Bayesian statistical methods, Springer Dordrecht Heidelberg London, New York.
  9. Hwang, S. and Oh, C. (2016). Estimation of the case fatality ratio of MERS epidemics using information on patients' severity condetion. Journal of the Korean Data & Information Science Society, 27, 599-607. https://doi.org/10.7465/jkdi.2016.27.3.599
  10. Jo, S., and Lee, J. (2016). Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model. Journal of the Korean Data & Information Science Society, 27, 1155-1168. https://doi.org/10.7465/jkdi.2016.27.5.1155
  11. Kendall, D. G. (1966). Branching processes since 1873. Journal of London Mathematics Society, 41, 386.
  12. Kimmel, M. and Axelrod, D. E. (2002). Branching processes in biology, Springer-Verlag Inc., New York.
  13. Korea Centers for Disease Control and Prevention. (2015). Middle east respiratory syndrome coronavirus outbreak in the Republic of Korea. Osong Public Health and Research Perspectives, 6, 269-278. https://doi.org/10.1016/j.phrp.2015.08.006
  14. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., Getz, W. M. (2005). Superspreading and the impact of individual variation on disease emergence. NATURE, 438, 355-359. https://doi.org/10.1038/nature04153
  15. Monahan, J. F. (2001). Numerical methods of statistics, Cambridge University Press, New York.
  16. Patil, G. P. (1970). Random counts in models and structures, Pensylvania State University Press, University Park PA.
  17. Piegorsch, W. W. (1990). Maximum-likelihood estimation for the negative binomial dispersion parameter. Biometrics, 46, 863-867. https://doi.org/10.2307/2532104
  18. Pielou, E. C. (1977). Mathematical Ecology, Wiley, New York.
  19. Pieters, E. P., Gates, C. E., Matis, J. H. and Sterling, W. L. (1977). Small sample comparison of different estimators of negative binomial parameters. Biometrics, 33, 718-723. https://doi.org/10.2307/2529470
  20. Pinsky, M. A. and Karlin, S. (2011). An Introduction to stochastic modeling, 4th Ed., Academic Press, San Diego.
  21. Ryu, S. and Choi, B. (2015). Development of epidemic model using the stochastic method. Journal of the Korean Data & Information Science Society, 26, 301-312. https://doi.org/10.7465/jkdi.2015.26.2.301
  22. Saha, K. and Paul, S. (2005). Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics, 61, 179-185. https://doi.org/10.1111/j.0006-341X.2005.030833.x

Cited by

  1. 절삭 혼합모형을 이용한 우리나라 삼일열 말라리아 장단기 잠복기 비율 추정 vol.29, pp.4, 2017, https://doi.org/10.7465/jkdi.2018.29.4.1025