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Abstract
In research on behavioral studies, significant attention has been paid to the stage-sequential process for

longitudinal data. Latent class profile analysis (LCPA) is an useful method to study sequential patterns of the
behavioral development by the two-step identification process: identifying a small number of latent classes at
each measurement occasion and two or more homogeneous subgroups in which individuals exhibit a similar
sequence of latent class membership over time. Maximum likelihood (ML) estimates for LCPA are easily ob-
tained by expectation-maximization (EM) algorithm, and Bayesian inference can be implemented via Markov
chain Monte Carlo (MCMC). However, unusual properties in the likelihood of LCPA can cause difficulties in
ML and Bayesian inference as well as estimation in small samples. This article describes and addresses erratic
problems that involve conventional ML and Bayesian estimates for LCPA with small samples. We argue that
these problems can be alleviated with a small amount of prior input. This study evaluates the performance of
likelihood and MCMC-based estimates with the proposed prior in drawing inference over repeated sampling.
Our simulation shows that estimates from the proposed methods perform better than those from the conventional
ML and Bayesian method.

Keywords: dynamic data-dependent prior, latent class profile analysis, latent stage-sequential
process, maximum posterior estimator, small samples

1. Introduction

Many behavioral and biomedical studies investigate longitudinal stability and change by analyzing
collected survey data intended to address sequential patterns of behavioral development. In the area
of substance use prevention and treatment, prevention scientists aim to find the best opportunities for
intervening in substance use behavior to slow the process of drug dependence. Recently, a number of
new developments in methods for the analysis of stage-sequential processes have been derived from
latent class analysis (LCA) that includes the latent class profile analysis (LCPA). The LCPA identifies
subtypes of the stage-sequential patterns of behavioral development (Chung et al., 2011). In LCPA the
measurement model at each time point is an LCA and the stage-sequential patterns are summarized
in the form of latent class memberships that vary across multiple time points. A fundamental issue in
LCPA involves specifying the relationshipf among class membership over multiple points in a flexible
yet parsimonious way. The LCPA can classify a small number of common pathways of latent classes
(i.e., latent class profiles) by considering the joint distribution of class membership over time as a
mixture of class profiles that are not directly observable. LCPA has been applied to the study of

1 Corresponding author: Department of Statistics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.
E-mail: hwanch@korea.ac.kr

Published 31 March 2016 / journal homepage: http://csam.or.kr
c⃝ 2016 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



132 Hyung Choi, Hwan Chung

early-onset drinking and subsequent drinking behavior among U.S. adolescents (Chung and Anthony,
2013). Four classes of drinking behavior where all drinkers in a class at a certain time point were
expected to be homogeneous in terms of drinking behavior. They also showed that the sequences of
drinking behavior were grouped into three class profiles, where all individuals in a given profile will
have similar sequential pattern of class membership over time. In addition, they provided support for
the view that patterns of sequential latent growth depend on the timing of drinking onset.

LCPA parameters can be estimated by maximum likelihood (ML) and Bayesian method using
an expectation-maximization (EM) algorithm and Markov chain Monte Carlo (MCMC), respectively.
With small samples, however, difficulties in ML and Bayesian inference and estimation can be caused
by unusual properties in the likelihood of LCPA. In this study, we will describe and address several
problems in small-sample inference for LCPA. We argue that problems can be alleviated with a small
amount of prior input when conventional ML and Bayesian estimates behave erratically.

The organization of the rest of this article is: in Sections 2 and 3, we introduce LCPA and show po-
tential complications in small-sample inference with conventional estimation algorithms such as EM
and MCMC. To address these problems, a detailed explanation of estimation strategies is provided in
Section 4. In Section 5, we evaluate the performance of estimates and intervals from proposed algo-
rithms over repeated sampling. Our simulation shows that proposed methods perform better than the
conventional ML and Bayesian method. We then apply proposed methods to alcohol drinking items
drawn from the National Longitudinal Survey of Youth 1997 (NLSY97) to assess the performance of
each algorithm.

2. Latent class profile analysis

Let C = (C1, . . . ,CT ) denote the class membership variables from time t = 1 to T , and the ith individ-
ual’s observation cit can take any integer value from 1 to C (i.e., cit = 1, 2, . . . ,C) for t = 1, 2, . . . , T .
Let U denote the variable of the latent class profile membership with S nominal categories. The main
idea of LCPA is that the relationship among class membership over T points in time can be explained
by the assumption that the population consists of unobservable S class profiles. The class member-
ships C = (C1, . . . ,CT ) are conditionally independent given the class profile U. If the ith individual’s
class memberships over time, ci = (ci1, . . . , ciT ), and his/her class profile membership si are given, the
joint probability that they belong to the class sequence ci and the class profile si is

P(U = si,C = ci) = P(U = si)P(C = ci | U = si)

= P(U = si)
T∏

t=1

P(Ct = cit | U = si). (2.1)

Equation (2.1) shows that the class memberships over T points in time ci = (ci1, . . . , ciT ) are condi-
tionally independent given the class profile si. This property, called local independence assumption
(Lazarsfeld and Henry, 1968), allows us to draw inferences about discrete latent variables. The class
profile membership can be easily identified by an LCA if we can observe the individual’s class mem-
berships over T points in time. However, we should classify individual class memberships over time
based on item responses in order to identify class profile membership because each individual’s class
membership over time is not directly observable.

Let Yt = (Y1t, . . . , YMt) represent the vectorized discrete M variables measuring latent class mem-
bership at time t for t = 1, 2, . . . ,T , and let yit = (yi1t, . . . , yiMt) denote the ith individual’s observed
values of Yt, where each response yimt can take any integer value from 1 to rm for m = 1, . . . , M and
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t = 1, . . . , T . Given the class profile si, the contribution of the ith individual in the conditional prob-
ability of belonging to class sequencing ci = (ci1, . . . , ciT ) with responses yi = (yi1, . . . , yiT ) would
be

P(C = ci,Y = yi | U = si) =
T∏

t=1

P(Ct = cit | U = si)P(Yt = yit | Ct = cit)

=

T∏
t=1

P(Ct = cit | U = si)
M∏

m=1

P(Ymt = yimt | Ct = cit). (2.2)

We assume the following to investigate the relationship among the manifest items in (2.2):

(i) Yt = (Y1t, . . . , YMt) are conditionally independent given the class membership Ct.

(ii) The profile membership U is related to items Yt only through the class membership Ct.

Here, assumption (ii) implies that U depends on the class memberships over time C = (C1, . . . ,CT )
but not on the items (Y1, . . . ,YT ) conditioning on C. The joint probability that the subject belongs to
the class sequencing ci = (ci1, . . . , ciT ) given the profile si and responses yi = (yi1, . . . , yiT ) expressed
as

L∗i = P(U = si,C = ci,Y = yi)
= P(U = si)P(C = ci,Y = yi | U = si)

= P(U = si)
T∏

t=1

P(Ct = cit | U = si)
M∏

m=1

P(Ymt = yimt | Ct = cit). (2.3)

Therefore, the ith individual’s contribution to the likelihood function of LCPA without considering
class. Class profile can be represented by

Li = P(Y = yi)

=

S∑
si=1

C∑
ci1=1

· · ·
C∑

ciT=1

L∗i

=

S∑
s=1

γs

T∏
t=1

 C∑
ct=1

η(t)
ct |s

M∏
m=1

ρ(t)
mk|ct

 . (2.4)

In (2.4), the following three sets of parameters are estimated:

(i) ρ(t)
mk|ct
= P(Ymt = k | Ct = ct): the probability of the response k to the mth item for a given class ct

at t time

(ii) η(t)
ct |s = P(Ct = ct | U = s): the conditional probability of belonging to class ct at time t for a

given class profile s

(iii) γs = P(U = s): the probability of belonging to class profile s.

Here, the ρ-parameters, called primary measurement parameters, are generally constrained to be
equal across each measurement occasion (i.e., ρmk|c = ρ(1)

mk|c = · · · = ρ(T )
mk|c) for k = 1, . . . , rm and
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m = 1, . . . , M. One difficulty with ρ-parameters that depend on waves is that the definition of the
latent class may be unsettled as time advances. Thus, substantive researchers typically constrained
the ρ-parameters to be equal across waves in order to make the meaning of the latent class invariant
over T points in time. The η-parameters (called secondary measurement parameters) describes the
relation among a class membership ct at time t and a class profile s. A class profile can be interpreted
by looking at the estimated secondary measurement parameters, which show a specific transitional
pattern of class membership over time.

3. Standard estimation algorithms

Parameters in LCPA are easily estimated by ML via EM algorithm or Bayesian method via MCMC.
In this part, we will introduce methods with respect to estimating parameters in the LCPA model and
show potential complications in small-sample inference with conventional methods.

3.1. EM algorithm

The EM algorithm is a well-used solution for incomplete data with a missing value problem by
searching ML through repeated process (Dempster et al., 1977). In LCPA, it is difficult to maxi-
mize the observed-data log-likelihood function given in (2.4) directly. However, if latent class and
latent class profiles memberships were observed, we could easily maximize the complete-data log-
likelihood given in (2.3). Using this idea, EM algorithm maximizes the observed-data log-likelihood
function by repeatedly updating the guess of latent memberships (i.e., class and class profile) and
maximizing complete-data log-likelihood based on the updates. EM algorithm is an iterative process
which has two steps (E-step and M-step) in each iteration. In the E-step, we calculate the expectation
of unobservable values for the cross-classification by U and C1, . . . ,CT with the current version of
model parameters, conditioned on observed data yi1, . . . , yiT for = 1, . . . , n.

θi(s,c1,...,cT ) = P(U = s,C = c, | yi)

=
γs

∏T
t=1 η

(t)
ct |s

∏M
m=1 ρ

(t)
mk|ct∑S

s=1 γs
∏T

t=1

[∑C
ct=1 η

(t)
ct |s

∏M
m=1 ρ

(t)
mk|ct

] . (3.1)

Note that θi(s,c1,...,cT ) can be easily calculated with the current parameter updates (i.e., The posterior
probability given in (3.1) is the function of LCPA model parameters.)

In the M-step, we maximize the complete-data log-likelihood with the expectation of unobservable
values computed in the E-step. We update the parameter estimates by

γ̂s =

∑n
i=1 θi(s)

n
, η̂(t)

ct |s =

∑n
i=1 θ

(t)
i(s,ct)∑n

i=1 θi(s)
, ρ̂mk|c =

∑n
i=1

∑T
t=1 θ

(t)
i(c)I(yimt = k)∑n

i=1
∑T

t=1 θ
(t)
i(c)

,

where θis =
∑

c1
· · ·∑cT

θi(s,c1,...,cT ), θ
(t)
i(s,c) =

∑
c1
· · ·∑ct−1

∑
ct+1
· · ·∑cT

θi(s,c1,...,cT ) and θ(t)
ic =

∑
s θ

(t)
i(s,c). The

relatively ease of the EM algorithm have made the ML methods popular for the LCPA, especially when
the shape of the log-likelihood function is not far from quadratic. However, the likelihood function
of the LCPA has some unusual features which can make likelihood-based inferences troublesome.
For example, the model parameters may be estimated on the boundary of the parameter space (i.e.,
zero or one) in small-sample LCPA. Although item-response probabilities close to zero or one are
highly desirable from a measurement perspective, the boundary solution is one of main challenges
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Figure 1: Maximum-likelihood estimates for (a) η(1) = (η(1)
1|1, η

(1)
1|2) = (0.7, 0.1), (b) η(2) = (η(2)

1|1, η
(2)
1|2) = (0.8, 0.2),

(c) η(3) = (η(3)
1|1, η

(3)
1|2) = (0.9, 0.3), (d) ρ1 = (ρ11|1, ρ11|2) = (0.7, 0.1), (e) ρ2 = (ρ21|1, ρ21|2) = (0.8, 0.2), and (f)

ρ3 = (ρ31|1, ρ31|2) = (0.9, 0.3) from 500 samples.

(a) (b) (c)

(d) (e) (f)

η(1)
1|1

η(1)
1|2

η(2)
1|1

η(2)
1|2

η(3)
1|1

η(3)
1|2

ρ11|1

ρ11|2

ρ21|1

ρ21|2

ρ31|1

ρ31|2

for ML inference. When some of these parameters are estimated on the boundary, it is impossible
to obtain standard errors from the inverted Hessian matrix. In such case, standard errors based on
asymptotic theory might not portray uncertainty in a useful way. To illustrate, we simulated data from
the two-class/two-profile LCPA with three points in time. The two latent classes were measured by
three binary items. We drew 500 samples of n = 50 and computed ML estimates by an EM algorithm.
The true parameters were γ1 = 0.5, η(1) = (η(1)

1|1, η(1)
1|2) = (0.7, 0.1), η(2) = (η(2)

1|1, η
(2)
1|2) = (0.8, 0.2),

η(3) = (η(3)
1|1, η

(3)
1|2) = (0.9, 0.3), ρ1 = (ρ11|1, ρ11|2) = (0.7, 0.1), ρ2 = (ρ21|1, ρ21|2) = (0.8, 0.2), and

ρ3 = (ρ31|1, ρ31|2) = (0.9, 0.3).
Figure 1 displays the sampling distributions of the estimates. The non-normal shape of the sam-

pling distribution of the η-estimates shown in Figure 1(a), (b), and (c) suggests that usual large-sample
approximations would be inaccurate. Approximately, 15%–25% of the η-estimates converged to the
boundary solution with a criterion of 10−6, and these boundary solutions cause the problem in ob-
taining adequate standard errors for the LCPA model with small samples. The average, root-mean
squared error (RMSE), and percent coverage of the ML estimates will be given in Tables 1 and 2 to
compare the performance of ML estimates to their counterparts in Section 5.

3.2. MCMC

Given the difficulties associated with likelihood-based inference, MCMC simulates random draws
of model parameters for LCPA from a posterior distribution. MCMC may produce estimates and
credible regions for model parameters without appealing to large-sample approximations. MCMC
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treats the class and profile membership of each individual as missing data, and generates the aug-
mented posterior as if class and profile memberships were known. The MCMC is an iterative two-
step procedure which can be regarded as a form of data augmentation (Tanner and Wong, 1987)
or Gibbs sampling (Gelfand and Smith, 1990). In the first step of MCMC procedure, the imputa-
tion or I-step, we compute the posterior probability given in (3.1) and simulate the class and profile
membership for each individual with the posterior probability. Let zi(s,c1,...,cT ) be a binary indicators
of the ith individual’s class and profile memberships. If the ith individual belongs to profile s and
class sequence (c1, . . . , cT ), then zi(s,c1,...,cT ) equals 1 and 0 otherwise. In I-step, we generate a ran-
dom draw for zi(s,c1,...,cT ) from a multinomial distribution with the probability θi(s,c1,...,cT ) independently
for i = 1, . . . , n. Once the class and profile memberships are imputed, we then calculate marginal
counts n(t)

(s,ct)
=

∑
i
∑

c1
· · ·∑ct−1

∑
ct+1
· · ·∑cT

zi(s,c1,...,cT ) =
∑

i z(t)
i(s,ct)

, n(t)
c =

∑
i
∑

s z(t)
i(s,c) =

∑
i z(t)

i(c), ns =∑
i
∑

c z(t)
i(s,c) =

∑
i zi(s), and nmk|c =

∑
i
∑

t z(t)
i(c)I(yimt = k) for s = 1, . . . , S , c = 1, . . . ,C, t = 1, . . . , T ,

m = 1, . . . , M, and k = 1, . . . , rm. In the second step, the posterior or P-step, we draw new random val-
ues for all parameters independently from the augmented posterior. Here, we may apply the Jeffreys
prior and draw new random values for the model parameters from Dirichlet posterior distributions

γ1, . . . , γS ∼ Dirichlet
(
n1 +

1
2
, . . . , nS +

1
2

)
,

η(t)
1|s, . . . , η

(t)
C|s ∼ Dirichlet

(
n(t)

1|s +
1
2
, . . . , n(t)

C|s +
1
2

)
,

ρm1|c, . . . , ρmrm |c ∼ Dirichlet
(
nm1|c +

1
2
, . . . , nmrm |c +

1
2

)
,

for s = 1, . . . , S , t = 1, . . . ,T , m = 1, . . . , M, and c = 1, . . . ,C. This two-step procedure iteratively
produces the sequences that converge to a stationary posterior distribution. The details of a Bayesian
approach using MCMC algorithm for LCPA can be found in Chung and Anthony (2013).

We can implement the algorithm for a burn-in period to eliminate simulated parameters that rely on
the starting values in an archetypal Bayesian approach. Averaging outcome stream of parameters after
burn-in produces estimates for posterior means and variances (Tierney, 1994). Previous studies have
proposed various methods of choosing the lengths of series and burn-in periods (Gelman and Rubin,
1992; Geweke, 1992; Robert, 1992), and we used time-series plots and autocorrelation functions to
visually monitor the outcome stream from the MCMC and to confirm our selection of the length of
series and burn-in periods.

The labeling problem becomes more acute with MCMC because the likelihood function of the
LCPA has multiple equivalent modes which are invariant to permutations of class and profile labels.
This invariant property may cause the most troubling aspect of MCMC for LCPA, called label switch-
ing. Because class or profile labels may permute during the MCMC run, the interpretation of the
output stream of simulated parameters becomes dubious. Label switching can be particularly prob-
lematic in LCPA with small samples. To illustrate, we considered the two-class/two-profile LCPA
with three points in time with true parameters given in Figure 1. Figure 2 shows the time-series plots
for η parameters over the first 3,000 iterations after 2,000 burn-in iterations. Figure 2 also shows the
order of η parameters reversed many times, requiring the tedious reordering of profile labels for ob-
taining meaningful averages for η parameters. This simulation illustrates the label-switching problem.

4. Inference for a small sample LCPA
From a purely computation standpoint, EM and MCMC are relatively easy to implement for the
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Figure 2: Time-series plots of (a) η(1)
1|1, (b) η(1)

1|2, (c) η(2)
1|1, (d) η(2)

1|2, (e) η(3)
1|1, and (f) η(3)

1|2 over 3,000 iterations of
MCMC.
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LCPA. However, the unusual features of LCPA (e.g., boundary solution and label switching) can make
the standard ML and/or Bayesian inferences troublesome, especially for the small sample LCPA.
Therefore, we propose two potential solutions to these problems in this section.

4.1. Maximum posterior estimator

The Bayesian approach was applied to the standard ML method for a single binomial variable using
Jefrreys prior by Rubin and Schenker (1987). They showed that the maximum posterior estimator
(MPE) performed better than the standard maximum likelihood estimator (MLE). In LCPA, it is con-
venient to choose priors that cause all model parameters to be a posteriori independent. One way
to achieve this is to impose Dirichlet priors on the joint probabilities of class and profile member-
ships and item-response probabilities, respectively. Let the vectors of LCPA model parameters given
in (2.4) be: Ψ = (γ, η(1)

1 , . . . , η(T )
S , ρ1|1, . . . , ρM|C), where γ = (γ1, . . . , γS ), η(t)

s = (η(t)
1|s, . . . , η

(t)
C|s) for

s = 1, . . . , S and t = 1, . . . , T , and ρm|c = (ρm1|c, . . . , ρmrm |c) for m = 1, . . . , M and c = 1 . . . ,C. Then,
the Dirichlet priors for model parameters can be given by

P(Ψ) ∝ P (γ) P
(
η(1)

1 , . . . , η(T )
S

)
P

(
ρ1|1, . . . , ρM|C

)
=

 S∏
s=1

{γs}α(s)

  S∏
s=1

T∏
t=1

C∏
c=1

{
η(t)

c|s

}β(s,c)

  C∏
c=1

M∏
m=1

rm∏
k=1

{
ρmk|c

}δ(m,k)

 .
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The joint posterior for Ψ given (y1, . . . , yn) can be expressed as

P (Ψ | y1, . . . , yn)

= P(Ψ)P (y1, . . . , yn | Ψ)

∝
 S∏

s=1

{γs}
∑

i θi(s)+α(s)

 ×
 S∏

s=1

T∏
t=1

C∏
c=1

{
ηc|s

}∑
i θ

(t)
i(s,c)+β(s,c)

 ×
 T∏

t=1

C∏
c=1

M∏
m=1

rm∏
k=1

{
ρmk|c

}∑
i

(
θ(t)

i(c)I(yimt=k)
)
+δ(m,k)

 , (4.1)

where α(s), β(s,c) and δ(m,k) are the hyper-parameters. The updated parameters for MPE maximizing
(4.1) are obtained by

γ̂s =

∑n
i=1 θis + α(s)

n + α
, η̂(t)

c|s =

∑n
i=1 θ

(t)
i(s,c) + β(s,c)∑n

i=1 θi(s) + β(s)
, ρ̂mk|c =

∑n
i=1

∑T
t=1 θ

(t)
ict

I(yimt = k) + δ(m,k)∑n
i=1

∑T
t=1 θ

(t)
ict
+ δ(m)

, (4.2)

where α =
∑S

s=1 α(s), β(s) =
∑C

c=1 β(s,c), and δ(m) =
∑rm

k=1 δ(m,k). The effect of hyper-parameters
α(1), . . . , α(S ) for γ is to smooth the parameter estimates toward profile sizes. For example, the use
of constant hyper-parameters ω = α(1) = · · · = α(S ) is equivalent to adding the equivalent ω obser-
vations to each of profiles. For η, the hyper-parameters β(s,1), . . . , β(s,C) has a flattening effect on the
elements of (η(t)

1|s, . . . , η
(t)
C|s) by adding the fictitious β(s) observations to each of classes at time t for

s = 1, . . . , S . The hyper-parameters δ(m,k) could possibly depend on the data. For example, we can
select δ(m,k) ∝

∑
i
∑

t I(yimt = k)/Tn so that the prior distribution smoothes ρ-parameter toward an ML
estimate of the raw distribution of the mth item. These hyper-parameters will alleviate the boundary
solution problem for the ML method.

4.2. Bayesian estimator with dynamic data-dependent prior

An efficient strategy has been proposed to break the symmetry of the posterior distribution for ad-
dressing the label-switching problem in the exponential finite-mixture models (Chung et al., 2004).
They pre-classified one (or more) observations (observations with minimum or maximum value) into
some mixture components and demonstrated that this method performed well over repeated sam-
ples. However, LCPA faces the challenge of determining which individuals to pre-classify for the
class and profile memberships. Substantive knowledge can often inform this decision; however, some
individuals may be particularly informative for blind selection of the pre-classification. For exam-
ple, let us consider an LCPA with four profiles with an individual who has posterior probabilities
(θi(1), θi(2), θi(3), θi(4)) = (0.01, 0.01, 0.97, 0.01) at one iteration during MCMC. The posterior implies
that this individual has a 97% chance of belonging to the third profile given their item responses.
Therefore, it is most likely that this individual would be imputed as the third profile and not change
his or her profile membership across iterations. If the imputed profile membership for this individual
changes between iterations, it would be a very strong indication that label switching has occurred.
A promising strategy is to assign a particular individual with a high posterior probability to a spe-
cific profile and classes over time. A natural criterion is the posterior probability calculated on the
basis of the running posterior mean of model parameters Ψ. Here, we propose an automated algo-
rithm using the dynamically adapted priors to select individuals to be assigned to classes and profiles
simultaneously.

LetΨ( j) be the generated model parameters from the LCPA posterior distribution at the jth MCMC
iteration. Furthermore, let Ψ̄(N)

= N−1 ∑N
j=1Ψ

( j) represent the posterior mean of the model parameters
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at the N th iteration. We can consider the cumulative posterior probability which is a function of the
cumulative posterior mean of model parameters at the N th iteration:

θi(s,c1,...,cT )

(
Ψ̄

(N))
=

γ̄(N)
s

∏T
t=1 η̄

(t)(N)

ct |s
∏M

m=1
∏rm

k=1

{
ρ̄(N)

mk|ct

}I(yimt=k)

∑S
s=1 γ̄

(N)
s

∏T
t=1

[∑C
ct=1 η̄

(t)(N)

ct |s
∏M

m=1
∏rm

k=1

{
ρ̄(N)

mk|ct

}I(yimt=k)
] . (4.3)

We can select some individuals who have “large” values for the profile s and class sequence c1, . . . , ct

and assign them to the respective profile and classes with certainty at the N th iteration. At the N th

iteration, for example, we can identify the subject with the largest value of the cumulative posterior
probability given in (4.3) by evaluating θ1(s,c1,...,cT )(Ψ̄

(N)), . . . , θn(s,c1,...,cT )(Ψ̄
(N)). We then pre-classify

this individual into respective combination of profile s and classes c1, . . . , cT at the N th iteration. By
repeating this procedure independently for all combinations of profile and classes, we can choose
S × CT subjects to be identified. Pre-classifying a small number of subjects into each combination
of profile and class memberships may be sufficient to break symmetry without introducing serious
subjectivity if the profile and class memberships are well discriminated. The standard I-step can be
easily modified to adopt this procedure: we could decisively put zi(s,c1,...,cT ) = 1 at the N th iteration
when the ith subject is selected for profile s and class sequence c1, . . . , cT at that iteration of MCMC.
This asymmetric prior to the LCPA likelihood function tends to dampen the nuisance posterior mode
while having a small effect on the posterior mode of interest. In situations where some profiles and/or
classes are not well differentiated, pre-classifying more individuals might be preferable. For the pre-
vious example, the time-series plots for η parameters over the first 3,000 iterations after burn-in 2,000
iterations showed a label switching problem in Figure 2. In contrast, Figure 3 shows that the label
switching are disappeared when two individuals are pre-classified into each profile and class.

5. Simulation study

The simulation study is conducted to investigate the performance of the ML, maximum posterior
(MP), and Bayesian methods using a dynamic data-dependent prior over repeated samples. In this
study, we draw 500 samples with n = 50 observations each from two-class (i.e., C = 2) and two-
profile (i.e., S = 2) LCPA with three binary items (i.e., M = 3) measured over three time points
(i.e., T = 3) with parameters for the previous example setting (i.e., γ1 = 0.5, η(1) = (η(1)

1|1, η
(1)
1|2) =

(0.7, 0.1), η(2) = (η(2)
1|1, η

(2)
1|2) = (0.8, 0.2), η(3) = (η(3)

1|1, η
(3)
1|2) = (0.9, 0.3), ρ1 = (ρ11|1, ρ11|2) = (0.7, 0.1),

ρ2 = (ρ21|1, ρ21|2) = (0.8, 0.2), ρ3 = (ρ31|1, ρ31|2) = (0.9, 0.3)). For each sample, we estimate model
parameters by four different methods: the standard ML method using the EM algorithm, MP method
with hyper-parameters defined in (4.1) and (4.2), MCMC method with two and four subjects assigned
dynamically across iterations (DYN-2 and DYN-4, respectively) by dynamic data dependent prior.
For hyper-parameters in MP, we chose Jeffreys prior, so all hyper-parameters are to be set 1/2 for
all parameters. For interval estimates, we compute and invert the Hessian of the log-likelihood (for
ML) and posterior log-likelihood (for MP). However, the interval estimates may stray outside the unit
interval with the boundary solutions. To solve this problem, we generate the bootstrapping sampling
to obtain standard errors for the model parameters, and then apply the normal approximation on the
logistic scale (Goodman, 1974). For MCMC, we run 2,000 iterations after 1,000 burn-in periods with
two and four subjects assigned to each profile and class at each point in time.

Figure 4 shows the distributions of estimates for η-parameters over the 500 samples from ML,
MP, DYN-2, and DYN-4. Comparing distributions of ML estimates (a) in with those of the MP (b),
DYN-2 (c), and DYN-4 (d) in Figure 1, we see that MP and Bayesian methods using data-dependent
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Figure 3: Time-series plots of (a) η(1)
1|1, (b) η(1)

1|2, (c) η(2)
1|1, (d) η(2)

1|2, (e) η(3)
1|1, and (f) η(3)

1|2 over 3,000 iterations of MCMC
with dynamic data-dependent prior.

(a) (b)

(c) (d)

(e) (f)

η(1)
1|1 η(1)

1|2

η(2)
1|1 η(2)

1|2

η(3)
1|1 η(3)

1|2

Iteration Iteration

Iteration Iteration

Iteration Iteration

prior achieved obvious improvement over ML, especially in η-parameters: MP and Bayesian methods
did not converge to the boundary solution.

Table 1 provides the average and RMSE of the estimates of ML, MP, DYN-2, and DYN-4. All
methods except ML performed well. Under ML, RMSE values are consistently larger than other
methods, especially in the estimates for η-parameters. Table 2 provides the performance of interval
estimates and shows the percentage of intervals that covered targets as well as average interval width.
Narrower intervals are desirable provided that coverage remains at or above the nominal rate of 95%.
ML has poor coverage with wide intervals, comparing with MP, DYN-2, and DYN-4. The intervals
from ML for γ and η-parameters have extremely poor coverage, but the intervals are wide. The ML
has better coverage for ρ-parameters than γ and η parameters, but MP, DYN-2, and DYN-4 still have
higher coverage than ML with narrower intervals for ρ-parameters. Among Bayesian method, MP is
conservative in ρ-parameters, showing higher than nominal rates of coverage for ρ-parameters from
DYN-2 and DYN-4. The lengths of most of MP intervals for ρ-parameters are in the middle of those
from DYN-2 and DYN-4, yet its rates of coverage are higher than those of DYN-2 and DYN-4.

6. An application to adolescent substance use data

Our focus in this section is to apply our approach to a case example. In order to describe the difficul-
ties in inference with small samples in LCPA, we draw data from the National Longitudinal Survey
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Figure 4: Distribution of point estimates for η parameters over 500 samples obtained by (a) ML, (b) MP, (c)
DYN-2, and (d) DYN-4.
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1|1

of Youth 1997 survey that explores the transition from school to work and from adolescence to adult-
hood in the USA (http://www.bls.gov/nls/nlsy97.htm). The sample considered in this study includes
adolescents aged 12–14 years in 1997. Their alcohol drinking behavior were tracked over the three
survey years in 1997, 2000, and 2003. In the first survey year, 1997, adolescents were asked if they
had ever drunk alcohol. The 14–16 adolescents answered ‘yes’, and they are identified as the early
onset drinkers who are of interest for this study. Three self-report items measured drinking behavior
in these early onset drinkers: (a) how many days they had had one or more drinks of an alcoholic
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Table 1: Average (RMSE) point estimates over 500 repetitions
True ML MP DYN-2 DYN-4 True ML MP DYN-2 DYN-4

γ1 0.5 0.502 0.498 0.498 0.506
(0.218) (0.128) (0.142) (0.152)

η(1)
1|1 0.7 0.731 0.684 0.687 0.691

ρ11|1 0.7 0.698 0.704 0.698 0.701
(0.270) (0.193) (0.137) (0.145) (0.210) (0.182) (0.142) (0.141)

η(2)
1|1 0.8 0.821 0.786 0.777 0.773

ρ21|1 0.8 0.801 0.798 0.793 0.795
(0.266) (0.166) (0.124) (0.139) (0.180) (0.154) (0.120) (0.121)

η(3)
1|1 0.9 0 .913 0.857 0.848 0.860

ρ31|1 0.9 0.900 0.898 0.895 0.894
(0.164) (0.144) (0.116) (0.110) (0.143) (0.114) (0.088) (0.090)

η(1)
1|2 0.1 0.099 0.140 0.151 0.146

ρ11|2 0.1 0.098 0.104 0.108 0.105
(0.167) (0.145) (0.113) (0.115) (0.142) (0.116) (0.086) (0.092)

η(2)
1|2 0.2 0.189 0.218 0.217 0.220

ρ21|2 0.2 0.194 0.201 0.205 0.206
(0.255) (0.170) (0.123) (0.134) (0.182) (0.153) (0.125) (0.121)

η(3)
1|2 0.3 0.263 0.332 0.309 0.286

ρ31|2 0.3 0.293 0.294 0.294 0.292
(0.271) (0.195) (0.137) (0.150) (0.211) (0.181) (0.144) (0.140)

RMSE = root-mean squared error, ML = maximum likelihood, MP = maximum posterior, DYN-2 = two subjects across
iterations, DYN-4 = four subjects across iterations.

Table 2: Percent coverage (average width) of nominal 95% interval estimates over 500 repetitions
ML MP DYN-2 DYN-4 ML MP DYN-2 DYN-4

γ1
34.4 83.2 87.0 90.0

(0.605) (0.357) (0.430) (0.447)

η(1)
1|1

58.6 81.6 92.4 93.0
ρ11|1

77.6 92.0 87.6 92.2
(0.633) (0.516) (0.493) (0.515) (0.333) (0.289) (0.257) (0.291)

η(2)
1|1

49.8 89.2 93.2 92.0
ρ21|1

69.0 93.3 88.4 89.8
(0.491) (0.439) (0.431) (0.456) (0.284) (0.244) (0.218) (0.247)

η(3)
1|1

45.8 81.6 95.0 95.2
ρ31|1

71.8 95.0 90.4 93.6
(0.318) (0.321) (0.359) (0.375) (0.211) (0.179) (0.166) (0.139)

η(1)
1|2

46.0 80.0 94.0 95.2
ρ11|2

68.2 94.8 89.4 92.8
(0.326) (0.321) (0.353) (0.383) (0.210) (0.183) (0.165) (0.185)

η(2)
1|2

51.4 86.8 91.6 93.6
ρ21|2

70.0 93.8 84.6 91.6
(0.483) (0.447) (0.423) (0.455) (0.290) (0.240) (0.217) (0.250)

η(3)
1|2

55.6 79.2 91.4 91.0
ρ31|2

72.2 92.4 85.6 92.0
(0.636) (0.529) (0.489) (0.506) (0.332) (0.286) (0.254) (0.290)

ML = maximum likelihood, MP = maximum posterior, DYN-2 = two subjects across iterations, DYN-4 = four subjects
across iterations.

beverage during the last 30 days (Recent drinking), (b) how many days they had had five or more
drinks on the same occasion during the past 30 days (Binge drinking) and (c) how many days they
drank immediately before or during school or work hours in the last 30 days (Drinking at school).
The responses for Recent drinking, ranging from 0 to 30 days, were reduced to a three-category indi-
cator: non-drinker (0 days of drinking), occasional drinker (15 days of drinking) or regular drinker (6
or more days of drinking). For Binge drinking, respondents who had consumed five or more drinks
on the same occasion at least one time in the last 30 days were characterized as binge drinkers. A
binary indicator was created for Drinking at school: respondents who had consumed alcoholic bever-
ages immediately before or during school or work hours at least once in the last 30 days were placed
in a drinking-at-school group, whereas respondents without such drinking were put into a second,
non-school-drinking group.

The model parameters of LCPA are estimated based on the model presented by Chung et al.
(2013) (i.e., an LCPA is specified to include four classes of drinking behavior and three class profiles)
without any covariate. We randomly select 200 early onset drinkers among 14–16 adolescents. The
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Table 3: Estimated response probabilities to the drinking items for each class (i.e. ρ-parameters) under the
four-class/three-profile LCPA from ML, MP, DYN-2, and DYN-4

Probabilities for the following drinking items
Method Class Recent drinking Binge Drinking

Occasional Regular drinking at school

ML

Not current drinkers 0.111 0.000 0.000 0.000
Light drinkers 0.921 0.079 0.325 0.144
Occasional binge drinkers 0.666 0.334 0.759 0.458
Regular binge drinkers 0.353 0.647 0.976 0.135

MP

Not current drinkers 0.054 0.007 0.002 0.002
Light drinkers 0.916 0.060 0.072 0.122
Occasional binge drinkers 0.774 0.216 0.819 0.381
Regular binge drinkers 0.380 0.616 0.965 0.127

DYN-2

Not current 0.025 0.008 0.002 0.002
Light drinkers 0.942 0.042 0.103 0.099
Occasional binge drinkers 0.780 0.208 0.771 0.441
Regular binge drinkers 0.362 0.630 0.979 0.090

DYN-4

Not current drinkers 0.004 0.003 0.002 0.002
Light drinkers 0.910 0.082 0.018 0.088
Occasional binge drinkers 0.846 0.148 0.806 0.290
Regular binge drinkers 0.239 0.757 0.995 0.135

LCPA = latent class profile analysis, ML = maximum likelihood, MP = maximum posterior, DYN-2 = two subjects across
iterations, DYN-4 = four subjects across iterations.

point estimates for different estimation methods are reported in Table 3. The probabilities in Table 3
(i.e., ρ-parameters) are the probabilities of a ‘yes’ response probability for the three drinking items.
The label of the four classes can be assigned based on the pattern of these probabilities. The estimates
of the four different methods are nearly identical except for Binge drinking in ‘Light drinkers.’

Table 4 presents the estimated conditional probabilities of class membership at each age group
for a particular class profile (i.e., η-parameters) and the marginal probabilities of class profiles (i.e.,
γ-parameters) from the four different estimation methods. These four methods provide the similar
estimated of probabilities in η and γ parameters except in ‘Light drinking advancers’: there exists a
difference in estimated probabilities for ‘Light drinkers’ class probabilities over three different age
groups.

The standard errors for the estimates calculated by ML and MP are not available because the
Hessian matrix cannot be inverted. The Bayesian methods, however, have no difficulty in producing
interval estimates (not provided here). The standard Bayesian method have label switching problem
during an MCMC run, making the output difficult to interpret. Thus, we made attempt to reduce the
label switching problem by using data-dependent prior information. We conduct 3,000 iterations after
a burn-in period of 1,000 cycles by using a Jeffreys prior. Table 5 displays a summary of the assigned
individuals’ cumulative posterior probabilities. Here, we construct three sets of estimates that are
calculated by Bayesian approach methods using data-dependent prior information: pre-assigning one
subject across iterations (DYN-1), two subjects across iterations (DYN-2), and four subjects across
iterations (DYN-4). For example, during 3,000 iterations of DYN-1, the average value of the cumu-
lative posterior probabilities for the assigned subjects is close to one (i.e., the range of the cumulative
posterior probabilities is [0.591, 0.997]), and therefore assigning one subject at each iteration has little
impact on the posterior distribution. However, label switching still occurs because the data-dependent
prior given in DYN-1 is not sufficient to break the symmetry. By pre-classifying more subjects, the
posterior distribution tends to dampen the nuisance mode, but we are introducing more subjectivity
(i.e., the range of the cumulative posterior probabilities is wider).
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Table 4: Estimated probabilities of belonging to a specific class at a certain time point for each profile and
estimated profile prevalence under the four-class/three-profile LCPA from ML, MP, DYN-2, and DYN-4

Method Profile Class Probabilities for the following age groups
12–14 years 15–17 years 18–20 years

ML

Non-drinking stayers Not current drinkers 0.842 1.000 0.556
(44.4%) Light drinkers 0.024 0.000 0.327

Occasional binge drinkers 0.134 0.000 0.000
Regular binge drinkers 0.000 0.000 0.117

Light drinking advancers Not current drinkers 0.670 0.000 0.000
(17.5%) Light drinkers 0.234 1.000 0.689

Occasional binge drinkers 0.000 0.000 0.000
Regular binge drinkers 0.096 0.000 0.311

Regular binge advancers Not current drinkers 0.653 0.000 0.197
(38.1%) Light drinkers 0.092 0.000 0.071

Occasional binge drinkers 0.255 0.122 0.000
Regular binge drinkers 0.000 0.878 0.731

MP

Non-drinking stayers Not current drinkers 0.796 0.876 0.546
(42.1%) Light drinkers 0.082 0.049 0.223

Occasional binge drinkers 0.074 0.031 0.130
Regular binge drinkers 0.047 0.044 0.102

Light drinking advancers Not current drinkers 0.504 0.141 0.096
(16.1%) Light drinkers 0.338 0.534 0.690

Occasional binge drinkers 0.042 0.057 0.091
Regular binge drinkers 0.080 0.268 0.123

Regular binge advancers Not current drinkers 0.630 0.044 0.125
(41.9%) Light drinkers 0.071 0.129 0.025

Occasional binge drinkers 0.280 0.158 0.034
Regular binge drinkers 0.019 0.669 0.816

DYN-2

Non-drinking stayers Not current drinkers 0.771 0.891 0.522
(40.9%) Light drinkers 0.096 0.071 0.233

Occasional binge drinkers 0.091 0.021 0.140
Regular binge drinkers 0.042 0.017 0.105

Light drinking advancers Not current drinkers 0.567 0.070 0.059
(18.0%) Light drinkers 0.332 0.571 0.771

Occasional binge drinkers 0.020 0.039 0.066
Regular binge drinkers 0.081 0.320 0.104

Regular binge advancers Not current drinkers 0.599 0.016 0.145
(41.1%) Light drinkers 0.056 0.106 0.013

Occasional binge drinkers 0.332 0.258 0.021
Regular binge drinkers 0.012 0.620 0.822

DYN-4

Non-drinking stayers Not current drinkers 0.708 0.787 0.538
(44.4%) Light drinkers 0.155 0.087 0.216

Occasional binge drinkers 0.131 0.118 0.234
Regular binge drinkers 0.007 0.008 0.011

Light drinking advancers Not current drinkers 0.601 0.026 0.017
(15.5%) Light drinkers 0.301 0.649 0.779

Occasional binge drinkers 0.019 0.033 0.152
Regular binge drinkers 0.080 0.291 0.052

Regular binge advancers Not current drinkers 0.608 0.086 0.107
(40.1%) Light drinkers 0.050 0.016 0.007

Occasional binge drinkers 0.327 0.373 0.047
Regular binge drinkers 0.016 0.525 0.838

LCPA = latent class profile analysis, ML = maximum likelihood, MP = maximum posterior, DYN-2 = two subjects across
iterations, DYN-4 = four subjects across iterations.
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Table 5: Summary of the cumulative posterior probabilities for the assigned subjects
Modified MCMC

DYN-1 DYN-2 DYN-4
Minimum 0.591 0.516 0.533
Maximum 0.997 0.982 0.976

MCMC =Markov chain Monte Carlo, DYN-1 = one subject across iterations, DYN-2 = two subjects across iterations,
DYN-4 = four subjects across iterations.

In application study, we applied an LCPA in an investigation of stage sequential patterns of drink-
ing behavior among early onset drinkers, using data from the NLSY97. We found that an LCPA could
identify four different patterns of drinking behavior at each measurement occasion; and the sequence
of early-onset drinkers’ drinking behavior could be summarized by three profiles. LCPA uncovered
four common drinking behavior in early onset drinkers over three measurements from early to late
adolescence, and the sequences of drinking behaviors were grouped into three sequential patterns
representing the most probable progression of early onset drinking behavior.

7. Discussion

Many behavioral scientists try to classify individuals into a small number of groups based on their
item-response pattern. The popularity of LCPA is increasing because LCPA can identify subtypes of
sequential patterns of discrete latent classes. This research has explored the inferential problems of
the LCPA model with small samples. We showed that MP method and Bayesian inference via MCMC
may be attractive alternatives to the standard ML method. The simulation study indicated that label
switching problem emerged with MCMC and suggested that the problems could be alleviated by
proposed strategies using prior information.

The proposed method using the MCMC with dynamic data-dependent prior may have some limita-
tions. It assigns pre-selected observations to different classes and profiles with certainty. The selection
of the pre-assigned individuals depends on the posterior probabilities of the class and profile member-
ship given the parameters; subsequently, the amount of impact it has on the mode of interest depends
on these probabilities. However, it would be more adversely affected than the mode of interest if
the nuisance mode is present. More research is required to investigate the limitations with the pre-
classifying technique across LCPA models with different distributions in item response probabilities
and larger numbers of classes and profiles.

The LCPA is one of the most useful in drug abuse intervention research when they lead to models
that provide an accurate representation of the data. However, model selection is a difficult challenge
facing LCPA users. Model selection encompasses selecting the number of latent classes needed to
reflect heterogeneity in the data, testing whether assumptions about the model are valid, and assess-
ing if parameter restrictions are reasonable. The first and most crucial step in LCPA is to choose
an appropriate number of classes and profiles since model selection has important ramifications for
analysis performed with the model. Substantive researchers have several methods at their disposal
to evaluate LTA fit depending on the software package used. In addition, a variety of relevant new
methods has been developed to assess model fit for finite mixture models. For example, the reversible
jump MCMC (RJMCMC) and the Bayesian nonparametric approach are proposed to provide a set of
principles for the systematic model selection of LCPA (Chung and Chang, 2012) They explored these
two methodologies (i.e., RJMCMC and Dirichlet process) to select the number of latent LCPA com-
ponents and their performances were empirically evaluated via a simulation study. However, future
work should investigate more tailored methodologies specialized for LCPA with small samples.
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