• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.028 seconds

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.

Effect of Mouthguard on Tooth Distortion During Clenching (이악물기 시 발생되는 치아변형에 대한 구강보호장치의 역할)

  • Lee, Yun;Choi, Dae-Gyun;Kwon, Kung-Rock;Lee, Richard Sung-Bok;Noh, Kwan-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.405-417
    • /
    • 2010
  • Previous studies have already shown that mouthguard is effective in protecting jaw bone, teeth and oral tissue against sports trauma. However, other than severe trauma, repetitive force, such as disorders like clenching, cause teeth or oral tissue damage. These kinds of disorders usually present pathologic attrition in the posterior teeth, resorption in alveolar bone, loss of teeth and destruction of occlusion. Wearing a mouthguard is believed to be effective in preventing these disorders. But its effect is not examined thoroughly enough. The purpose of this study is to identify whether mouthguard is effective in reducing strain caused by clenching. Mandibular first molars in the normal occlusal relationship without any history of dental treatment were chosen. Biaxial type strain gauge was placed on the buccal surface of the tooth. Having maximum occlusal force, measured by load cell, as a standard, clenching intensity were divided into three stages; moment of slightly tooth contact, medium bite force (50% of maximum bite force), maximum bite force. Strain occurring in dentition in each stage with and without mouthguard was measured. Changes in strain (on dentition) between each stage and difference in strain, between with or without mouthguard were recorded by PCD-300 analyzer and PCD-30 soft ware. The data was statistically analyzed by Wilcoxon signed rank test. The following results were drawn; Without mouthguard, strain given on dentition increased as the clenching force increased. With mouthguard, strain given on dentition also increased as the clenching force increased. With mouthguard, strain decreased, in all cases of clenching force stages. Data on the moment of slightly tooth contact stage, had no statistical significance. However, with mouthguard, 50-90% of decrease in strain could be obtained in maximum occlusal force, compared to the group without mouthguard. Mouthguard decreased the strain on the dentition, caused by clenching. Therefore, mouthguard seems to be effective in preventing damage on dentition, by acting against clenching, which occurs both consciously and unconsciously during sports activities.

Seismic Design of Anchored Sheet Pile Walls in c-0 Soils (점성토 지반에 설치되는 앵커로 지지된 널말뚝의 내진설계)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-58
    • /
    • 1992
  • In the present study, an analytical solution method is proposed for the seismic design of anchored sheet pile walls used in port. The proposed analytical method deals with the anchored sheet pile walls with free earth support in sands and c- U soils, including the effects of hydrodynamic pressures and a condition of steady seepage between the two water levels. Also, the effects of various parameters(differential in water levels, anchor position, wall friction angle, dredge line slope, cohesion, adhesion etc.) on embedment depth, anchor force, and maximum bending moment are analyzed using the proposed method. In addition, comparisons between different definitions of safety factor are made, and necessary considerations required in the design of anchored sheet pile walls are examined.

  • PDF

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.

Objective Bayesian Estimation of Two-Parameter Pareto Distribution (2-모수 파레토분포의 객관적 베이지안 추정)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.713-723
    • /
    • 2013
  • An objective Bayesian estimation procedure of the two-parameter Pareto distribution is presented under the reference prior and the noninformative prior. Bayesian estimators are obtained by Gibbs sampling. The steps to generate parameters in the Gibbs sampler are from the shape parameter of the gamma distribution and then the scale parameter by the adaptive rejection sampling algorism. A numerical study shows that the proposed objective Bayesian estimation outperforms other estimations in simulated bias and mean squared error.

Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept (참조응력개념을 이용한 국부감육배관 평가법 개발)

  • Lim, Hwan;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability (병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화)

  • Hong, Geum-Sik;Lee, Seung-Hwan;Choe, Jin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

Unusual Non-magnetic Metallic State in Narrow Silicon Carbon Nanoribbons by Electron or Hole Doping

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.763-769
    • /
    • 2012
  • We investigated the width (N) dependence on the magnetization of N-ZSiC NR with electron and hole doping on the basis of systematic DFT calculations. The critical values of the upper and down critical concentration to give the maximum and zero magnetic moment at edge Si/C atoms by electron/hole doping ($x_{up,e}$, $x_{down,e}$, $x_{up,h}$, and $x_{down,h}$) depend on the width of N-ZSiC NR. Moreover, due to $x_{up,e}\;{\neq}\;x_{up,h}$ and $x_{down,e}\;{\neq}\;x_{down,h}$, the electron and hole doping effect are asymmetry, i.e, the critical electron doping value ($x_{down,e}$) is smaller than the critical hole doping value ($x_{down,h}$) and is almost independent of the width of NZSiC NR though the other critical values of the electron and hole doping that influence the magnetization of N-ZSiC NR depend on the width. It was also found that at $x_{down,e}$ or $x_{down,h}$ doping, the N-ZSiC NR turns into unusual non-magnetic metallic state. The magnetic behavior was discussed based on the band structures and projected density of states (PDOS) under the effect of electron/hole doping.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

Structural and Magnetic Properties of Epitaxial FexCo100-x Alloys Grown on Cr Substrate

  • Hossain, M.B.;Kim, C.G.;Chun, B.S.;Kim, W.D.;Hwang, C.
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • We report the correlation between the magnetic properties and lattice parameter of $Fe_xCo_{100-x}$ alloys as a function of constituent concentration. The saturation magnetization increases with Fe content and has a maximum value at approximately x=70 at.%. However, collapse in relative saturation magnetization is observed at approximately 30 at.% to 70 at.% of Fe in $Fe_xCo_{100-x}$ alloys. The collapse is due to the formation of Co-Co and Fe-Fe antibonding states instead of Fe-Co bonds. The lattice parameter also shrinks at approximately 30 at.% to 70 at.% of Fe. This shrinkage is due to an increase in the number of nearest neighbor antisite atoms, which then leads to a decrease in the long range order parameter.