• Title/Summary/Keyword: maximum element order

Search Result 434, Processing Time 0.053 seconds

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

The Effects of Pressure, Wind Velocity, and Diameter of Wet Element on the Measurement of Relative Humidity by a Psychrometer (압력, 풍속 및 습구온도계의 크기가 건습구습도계를 이용한 상대습도 측정에 미치는 영향)

  • Chi, D.S.;Kim, S.T.;Park, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-141
    • /
    • 1990
  • When the relative humidity is measured with an aspirated psychrometer, three factors, which affect the measurement of relative humidity, are atmospheric pressure, the size of wet element and the wind velocity. This paper investigated the effects of the above three factors, and the computer code was developed in order to enhance the accuracy of the relative humidity measurement. As results, it is found that the relative humidity decreases by 6%RH with increasing atmospheric pressure from 650 mbar to 1100 mbar. It is found that the relative humidity drops down when the size of the wet element increases, though the effect of the size of the wet element is not significant. Finally, relative humidity increases with the increasing wind velocity. The difference between the psychrometic table in the present KS and the present results is about 2%RH maximum. As a conclusion, the three factors mentioned above should be considered in order to secure accurate measurement of relative humidity.

  • PDF

Design optimization of spot welded structures to attain maximum strength

  • Ertas, Ahmet H.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.995-1009
    • /
    • 2015
  • This study presents design optimization of spot welded structures to attain maximum strength by using the Nelder-Mead (Simplex) method. It is the main idea of the algorithm that the simulation run is executed several times to satisfy predefined convergence criteria and every run uses the starting points of the previous configurations. The material and size of the sheet plates are the pre-assigned parameters which do not change in the optimization cycle. Locations of the spot welds, on the other hand, are chosen to be design variables. In order to calculate the objective function, which is the maximum equivalent stress, ANSYS, general purpose finite element analysis software, is used. To obtain global optimum locations of spot welds a methodology is proposed by modifying the Nelder-Mead (Simplex) method. The procedure is applied to a number of representative problems to demonstrate the validity and effectiveness of the proposed method. It is shown that it is possible to obtain the global optimum values without stacking local minimum ones by using proposed methodology.

A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell (연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

Structural Analysis of Synthetic Heat Transfer Fluid Boiler (열매체보일러의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3352-3357
    • /
    • 2012
  • In this paper, 3-dimensional designing program CATIA was used to design in order to investigate causes of a fire in a boiler using synthetic heat transfer fluid. And also structural analysis was conducted to the boiler by using 3-dimensional finite element code, ANSYS. Maximum temperature, maximum stress, and maximum strain were obtained at the normal condition and after fire.

Analysis of the piled raft for three load patterns: A parametric study

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.289-302
    • /
    • 2013
  • The piled raft is a geotechnical construction, consisting of the three elements-piles, raft and the soil, that is applied for the foundation of a tall buildings in an increasing number. The piled rafts nowadays are preferred as the foundation to reduce the overall and differential settlements; and also, provides an economical foundation option for circumstances where the performance of the raft alone does not satisfy the design requirements. The finite element analysis of the piled raft foundation is presented in this paper. The numerical procedure is programmed into finite element based software SAFE in order to conduct the parametric study wherein soil modulus and raft thickness is varied for constant pile diameter. The problems of piled raft for three different load patterns as considered in the available literature (Sawant et al. 2012) are analyzed here using SAFE. The results obtained for load pattern-I using SAFE are compared with those obtained by Sawant et al. (2012). The fair agreement is observed in the results which demonstrate the accuracy of the procedure employed in the present investigation. Further, substantial reduction in maximum deflections and moments are found in piled raft as compared to that in raft. The reduction in deflections is observed with increase in raft thickness and soil modulus. The decrease in maximum moments with increase in soil modulus is seen in raft whereas increase in maximum moments is seen in piled raft. The raft thickness and soil modulus affects the response of the type of the foundation considered in the present investigation.

Finite Element Analysis of Stent Expansion Considering Stent, Artery and Plaque Interaction (유한요소 해석방법을 이용한 스텐트와 혈관, Plaque의 상호작용에 관한 연구)

  • Kim, Sung-Min;Park, Sung-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.121-125
    • /
    • 2006
  • In this paper, results are presented by nonlinear finite element simulations in order to analy the interactions between the stent and artery or plaque. Maximum of von Mises stress was calculated in the contacting areas between the stent and the artery. The simulated results show that the distal end of stent, which tilts after expansion, may injure the artery wall. In conclusion, this study may help designing new stents.

Finite Element Analysis of Temperature Distribution and Thermally Caused Deformation in Ventilated Disk Brakes

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.150-155
    • /
    • 1995
  • In order to analyze the thermal effects of the rotor models, the finite element technique was used in this study. The length of the hat was investigated as a design parameter. At the start of each brake application the disk surface temperature rapidly increases to a maximum value and then decays due to external cooling and thermal conduction to the hat. The calculated results indicate that the long length of the hat shows the minimum deformation in axial direction, which is related to the thermal problems, coned wear, vibration and noise.

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF