• Title/Summary/Keyword: maximum density theory

Search Result 51, Processing Time 0.027 seconds

Study on the Behavior of a Center Crack under Thermal Impact by the Dislocation Theory (전위이론에 의한 열충격하의 균열거동에 관한 연구)

  • Cho, Chong-Du;Ahn, Soo-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3408-3414
    • /
    • 1996
  • This paper investigated plane strain stress intensity factors caused by thermal impact on a center-crack strip. The crack was aligned perpendicularly to the strip boundary. The problem was analysed by determining the dislocation density function in the singular integral equations formulated by the dislocation theory. Under the abrupt temperature change along the edge, the center crack behaved as a mode I crack due to the symmetric geometry. The value of maximum stress intensity factor monotonically increased until the ratio of dimensionless crack length approached to about 0.3, followed by gradual decrease. As a result, a critical corresponding crack length was determined.

Friction Effect on the Powdered Metal Compaction (금속분말 압축성형에서의 마찰특성)

  • 장동환;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.226-230
    • /
    • 1997
  • A plasticity theory applicable to powdered metal compaction is briefly summarized and its variational form for the finite element analysis is described. The compaction processes of axisymmetric solid cylinder are simulated. For the analysis of the friction effect of solid cylinder, the investigations were performed for different compact geometries. Highlights of the results for given geometries are reported in terms of transmitted pressure on the lower punch from the upper punch through the compact and maximum density variation within the compacts. General conclusions from these simulation results are : (1) the friction coefficient could be selected from the transmitted force data during the single acting compaction test with the simulated results ; and (2) density variatioins within the compacts are very much dependent of the compact geometry such as the height to diameter ratio and the frictional condition between compact and dies.

  • PDF

Shape Optimal Design to Minimize Stress Concentration in the Journal of the Heating Drum for a Hot-Rolling Press (열간압연 프레스용 가열드럼 저어널부의 응력집중 최소화를 위한 형상 최적설계)

  • Kim Won-Jin;Lee Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.137-145
    • /
    • 2005
  • The present research deals with structural analysis and optimal design of the heating drum of a hot-rolling press for medium density fiberboard. Stress concentration in the journal of the heating drum is analyzed by the submodel technique of the finite element method. The fatigue life under operating conditions is analyzed and evaluated by the stress-life theory. Shape optimal design problems, to minimize the maximum stress occurring in the journal, are formulated and shape parameters of the corner fillets of the journal are defined as the design variables. The problems are solved by the numerical optimization method and optimal shapes are found. The optimal designs are shown to be reliable in terms of the maximum stress and the fatigue life.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory (산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

Helical Compounds Forming Gas-Phase Dimers: A Dispersion-corrected Density Functional Investigation

  • Tongying, Pornthip;Sooksimuang, Thanasat;Tantirungrotechai, Yuthana
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1231-1236
    • /
    • 2011
  • Chiral discrimination is the ability to distinguish one enantiomeric form over another. The differential binding interaction between two molecules with the same helicity and those with the opposite helicity was investigated by using dispersion-corrected density functional theory. [5]helicene, tetrahydro[5]helicene and the polar D-${\pi}$-A compounds, 3,12-dimethoxy-7,8-dicyano-[5]helicene and 3,12-dimethoxy-7,8-dicyano-tetrahydro[5]helicene were the monomers considered in this study. In gas phase, the dimeric interaction from two helical molecules with the opposite handedness is greater than from those with the same handedness. The stable configurations of such dimers were identified. The most stable configuration tends to be the one with maximum contact between monomers.

Reverberation time evaluation considering the acoustical characteristics of a cabin (선실의 음향학적 특성을 고려한 잔향시간 평가)

  • Choi, Jae-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.837-842
    • /
    • 2000
  • Reverberation time is the well known theory and widely used in commercial apparatus to get reverberation time. However large fluctuation in low frequency region occurs in a small cabin due to superposition of a few modes. This paper investigates this phenomena in terms of modal density in frequency domain and suggests a method to get lower limit of reverberation time using the integration of the time-SPL diagram. The suggestion is confirmed by simulation and shows reasonable results to get lower limit of reverberation time and maximum absorbing power in the cabin.

  • PDF

Strain Dependence of Adsorption Energy of Single Layer MoS2: Possibility of Catalytic Usage

  • Jeon, Bu-Gyeong;Lee, Chang-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.355-356
    • /
    • 2016
  • It is shown that the maximum value of exchange current is obtained where hydrogen adsorption energy is near 0. This enables to estimate catalytic efficiency of a material with hydrogen adsorption energy, which is relatively easier to calculate with density fuctional theory (DFT) method. Strain dependence of the adsorption energy was studied with DFT method and adsorption energy of 0.04 eV per hydrogen atom is obtained at 30% strain.

  • PDF

An Experimental Study on Compaction Characteristics of Gravel-mixed Decomposed Granite Soil (자갈이 함유된 화강풍화토의 다짐특성에 관한 연구)

  • Ham, Tae-Gew
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2007
  • In order to clarify the influence of gravel content on the mechanical properties of gravel-mixed decompose granite soils, large-scale one-dimensional compression tests were performed. The sample used in the study was a decomposed granite soil from Shimonoseki in Yamaguchi prefecture in Japan. After adjusting the grain size of the said soils, the specimen compacted with a certain level of compaction energy was put to the test. Based on the results obtained, when gravel-mixed decomposed granite soil was compacted at the same energy level, there existed the specific gravel content at which dry density was maximum and which also produced the minimum compression index. Furthermore, from these results, an expression based on a two-phase mixture theory was proposed to quantitatively evaluate the effects of gravel content and initial dry density and the material parameters calculated through the proposed method proved to exactly estimate the actual measuring value.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.