Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.12.639

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory  

Kim, Dae-Hee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
Kim, Yeong-Cheol (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Publication Information
Korean Journal of Materials Research / v.21, no.12, 2011 , pp. 639-643 More about this Journal
Abstract
Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.
Keywords
zinc oxide; p-type characteristic; Al and N co-doping; density functional theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976).   DOI
2 O. Madelung, Semiconductors-Basic Data, 2nd ed., P. 26, Springer, Berlin (1996).
3 A. F. Kohan, G. Ceder, D. Morgan and C. G. Van de Walle, Phys. Rev. B Condens. Matter, 61, 15019 (2000).   DOI   ScienceOn
4 S. B. Zhang, S.-H. Wei and A. Zunger, Phys. Rev. B Condens. Matter, 63, 075205 (2001).   DOI   ScienceOn
5 F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys., 90, 824 (2001).   DOI   ScienceOn
6 A. Janotti and C. G. Van de Walle, Phys. Rev. B Condens. Matter, 76, 165202 (2007).   DOI   ScienceOn
7 Y. Q. Gai, B. Yao, Y. F. Li, Y. M. Lu, D. Z. Shen, J. Y. Zhang, D. X. Zhao, X. W. Fan and T. Cui, Phys. Lett., 372, 5077 (2008).   DOI   ScienceOn
8 A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 87, 122102 (2005).   DOI   ScienceOn
9 P. Erhart, A. Klein and K. Albe, Phys. Rev. B Condens. Matter, 72, 085213 (2005).   DOI   ScienceOn
10 H. Kim, A. Cepler, M. S. Osofsky, R. C. Y. Auyeung and A. Pique, Appl. Phys. Lett., 90, 203508 (2007).   DOI   ScienceOn
11 J. L. Lyons, A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 95, 252105 (2009).   DOI   ScienceOn
12 C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. B Condens. Matter, 66, 073202 (2002).   DOI   ScienceOn
13 D. C. Look and B. Claflin, Phys. Status Solidi B, 241, 624 (2004).   DOI   ScienceOn
14 D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002).   DOI   ScienceOn
15 H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto and N. Orita, J. Phys. Condens. Matter, 13, 8901 (2001).   DOI   ScienceOn
16 J.-H. Lim and S.-J. Park, Kor. J. Mater. Res., 19, 417 (2009).   DOI   ScienceOn
17 J. Wang, E. Elamurugu, N. P. Barradas, E. Alves, A. Rego, G. Goncalves, R. Martins and E. Fortunato, J. Phys. Condens. Matter, 20, 075220 (2008).   DOI   ScienceOn
18 H. Wang, H. P. Ho and J. B. Xu, J. Appl. Phys., 103, 103704 (2008).   DOI   ScienceOn
19 G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins and S. B. Zhang, Appl. Phys. Lett., 86, 202106 (2005).   DOI   ScienceOn
20 D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001).   DOI   ScienceOn
21 J.-H. Lim and S.-J. Park, Kor. J. Mater. Res., 19, 443 (2009).   DOI   ScienceOn
22 Y. Yan, J. Li, S. H. Wei and M. M. Al-Jassim, Phys. Rev. Lett., 98, 135506 (2007).   DOI   ScienceOn
23 M. Joseph, H. Tabata and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999).   DOI   ScienceOn
24 M. Kumar, T.-H. Kim, S.-S. Kim and B.-T. Lee, Appl. Phys. Lett., 89, 112103 (2006).   DOI   ScienceOn
25 J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett., 84, 541 (2004).   DOI   ScienceOn
26 L. G. Wang and A. Zunger, Phys. Rev. Lett., 90, 256401 (2003).   DOI   ScienceOn
27 X. M. Duan, C. Stampfl, M. M. M. Bilek and D. R. McKenzie, Phys. Rev. B Condens. Matter, 79, 235208 (2009).   DOI   ScienceOn
28 G. Kresse and J. Hafner, Phys. Rev. B, 49, 14251 (1994).   DOI   ScienceOn
29 G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996).   DOI   ScienceOn
30 G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996).   DOI   ScienceOn
31 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 118, 8207 (2003).   DOI   ScienceOn
32 P. E. Blöchl, Phys. Rev. B, 50, 17953 (1994).   DOI   ScienceOn
33 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).   DOI   ScienceOn
34 D. M. Wood and A. Zunger, J. Phys. A Math. Gen., 18, 1343 (1985).   DOI   ScienceOn
35 P. Pulay, Chem. Phys. Lett., 73, 393 (1980).   DOI   ScienceOn
36 A. Bera and D. Basak, Appl. Phys. Lett., 94, 163119 (2009).   DOI   ScienceOn
37 H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater., 20, 561 (2010).   DOI   ScienceOn
38 J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li and S. T. Lee, Nano Lett., 6, 1887 (2006).   DOI   ScienceOn