• Title/Summary/Keyword: maximum blood pressure

Search Result 141, Processing Time 0.029 seconds

A Study on Implemetation of Non-invasive Blood Pressure (비침습적 혈압 측정 시스템 구현에 관한 연구)

  • 노영아;이종수;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Invasive methode and Non-invasive methode are used in blood pressure measurement. The Invasive methode can Set the correct measured blood pressure but, it has patient feels uncomfortable. So most of cases use Non-invasive methode. The Oscillometric method is commonly apply to modem electric sphygmomanometer and using various algorithm. In this paper describe about a algorithm it control and to determinate the cuff pressure, and filtering that data for measure the blood pressure. The communicating with personal computer can pressure deflation is by Solenoid valve and it uses RS-232 system in packet communication. The main using algorithm for blood pressure measurements are maximum amplitude algorithm and oscillometric algorithm. MAA(maximum amplitude algorithm) has various measured oscillation it depend on patient's age, height, weight and arm circumference size. In this paper, 1 studied the various measured oscillation apply to characteristic ratio and can get the result of systolic blood pressure, diastolic blood pressure, mean blood pressure. It was not used same ratio to measuring oscillation. In the MAA(maximum amplitude algorithm), we hope for reduce the difference with the real blood pressure and the measured blood pressure, when it applied with various specific ratio.

  • PDF

Development of Blood Pressure Measurement Method Using ANFIS (ANFIS를 이용한 전자 혈압 측정 알고리즘 개발)

  • Chun Myung-Geun;Kwon Seok-Young;Lee Dae-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.493-498
    • /
    • 2006
  • In this paper, we propose a blood pressure measurement method using ANFIS. Usually, the maximum and minimum blood pressures are calculated by Maximum Amplitude Algorithm(MAA) method. However, the MAA method has some drawbacks to measure exact blood pressure since it uses a fixed ratio to set the measuring points for everyone without considering individual's special conditions. To solve this problem, the pressures measured by the MMA are trained by ANFIS having self-learning ability. From various experiments, we confirm that the proposed method shows better performance than conventional method.

A Study on Measurement of Blood Pressure by Partial Least Square Method (부분최소자승법을 이용한 혈압 측정에 관한 연구)

  • Kim, Yong-Joo;Nam, Eun-Hye;Choi, Chang-Hyun;Kim, Jong-Deok
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.438-445
    • /
    • 2008
  • The purpose of this study was to develop a measurement model based on PLS (Partial least square) method for blood pressures. Measurement system for blood pressure signals consisted of pressure sensor, va interface and embedded module. A mercury sphygmomanometer was connected with the measurement system through 3-way stopcock and used as reference of blood pressures. The blood pressure signals of 20 subjects were measured and tests were repeated 5 times per each subject. Total of 100 data were divided into a calibration set and a prediction set. The PLS models were developed to determine the systolic and the diastolic blood pressures. The PLS models were evaluated by the standard methods of the British Hypertension Society (BHS) protocol and the American Association for the Advancement of Medical Instrumentation (AAMI). The results of the PLS models were compared with those of MAA (maximum amplitude algorithm). The measured blood pressures with PLS method were highly correlated to those with a mercury sphygmomanometer in the systolic ($R^2=0.85$) and the diastolic blood pressure ($R^2=0.84$). The results showed that the PLS models were the effective tools for blood pressure measurements with high accuracy, and satisfied the standards of the BHS protocol and the AAMI.

Effects of changes in blood pressure during brain vascular surgery on intraoperative neuromonitoring

  • Lee, Kyuhyun;Kim, Jaekyung
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.71-77
    • /
    • 2020
  • This study was conducted in order to determine how reductions in blood pressure during surgery affect intraoperative neuromonitoring. This retrospective study considered a total of 339 patients: 194 patients with normal neuromonitoring findings (57%), 145 (42%) with abnormal neuromonitoring findings, and 34 (10%) with postoperative neurological deficits. Comparisons between the three groups revealed that overall blood pressure during surgery, postoperative blood pressure, and the difference between the maximum and minimum blood pressure could affect the intraoperative neuromonitoring findings. While we indicate that a drop in blood pressure to below 70 mmHg could affect neuromonitoring results, differences in the dosage of anesthetic agents did not significantly affect reductions in blood pressure or neuromonitoring findings. The association of monitoring with blood pressure found in this study is expected to help future examiners. However, this study did not clarify the relationship between anesthesia and blood pressure and how it could affect intraoperative neuromonitoring. Therefore, further research on this part is thought to be necessary.

Compensation of Error in Noninvasive Blood Pressure Measurement System Using Optical Sensor (광학 센서를 이용한 비관혈적 혈압 측정의 오차 보정)

  • Ko, J.I.;Jeong, I.C.;Lee, D.H.;Park, S.W.;Hwang, S.O.;Park, S.M.;Kim, G.Y.;Joo, H.S.;Yoon, H.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.178-186
    • /
    • 2007
  • This study is attempted to correct an error of electronic blood pressure meter with an optical sensor. In general, for a hospitalized patient, ECG, blood pressure, oxygen saturation, and respiration are basically measured to monitor the patient's condition. Opening of a blood vessel after it is occluded by pressurizing the cuff influences the blood flow of peripheral blood vessels as well as oscillation changes in the cuff. Blood vessels are occluded and peripheral blood flow disappears at cuff pressure above the examinee's blood pressure, while blood vessels are opened and peripheral blood flow appears again at cuff pressure under the examinee's blood pressure. Then Disappear-Appear Point Length(DAPL) of peripheral blood flow can be judged with the signal of peripheral blood flow, thus is available as a factor of error correction for electronic blood pressure meter. Also, systolic or diastolic blood pressure can be corrected with Appear-Point-Pressure(APP) of cuff pressure at a point where blood flow occurs and Appear-Maximum Pressure(AMP) of cuff pressure at the maximum amplitude point of peripheral blood flow after peripheral blood flow appears again. For verification, 27 examinees were selected, and their blood value was obtained through experimental procedure of 4 stages including induction of blood pressure change. The examinees were divided into two groups of experimental group and control group, regression analysis was conducted for experimental group, and correction of a blood pressure error was verified with optical signal by applying the regression equation calculated in experimental group to control group. As an experimental result, mean of the whole measurement errors was 5mmHg or more, which did not meet the standard fur blood pressure meter. As a result of correcting blood pressure measurements with data of DAPL, APP, and AMP as drawn out of PPG signal, systolic blood pressure, mean blood pressure, and diastolic blood pressure were $-0.6{\pm}4.4mmHg,\;-1.0{\pm}3.9mmHg$ and $-1.3{\pm}5.4mmHg$, respectively, indicating that mean of the whole measurement errors was greatly improved, and standard deviation was decreased.

Design of the Blood Pressure Measurement System Using the Inflatable Oscillometric Method (가압식 오실로메트릭 방법을 사용한 혈압측정 시스템의 설계)

  • 노동곤;이윤선;지정호;박성빈;이계형;김해관
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • Blood Pressure is one of the most fundamental Parameters which reflects physical conditions medically and the blood pressure measurement system using oscillometric method is a Non-Invasive Blood Pressure measurement device by measuring arterial Pressure through a cuff. In this paper. we designed a inflatable wrist blood pressure system which measures blood Pressure during the stepping inflation in the wrist cuff. The hardware system consists of a main power unit, a bladder in cuff unit, signal detection units, signal Processing units. a wireless data transmission unit, and a data display unit. We evaluated the reliability of this system by comparing and analyzing systolic. diastolic blood Pressure, and heart rate with other commercial blood Pressure measurement devices. Characteristic ratio values used to determine systolic and diastolic blood Pressure using MAA(Maximum Amplitude Algorithm) were 0.436 and 0.671 respectively.

Effects of Pressurization on Finger's Blood Velocity of Tendon and Muscle Areas in Forearm of 20's male (20대 남성의 아래팔 손목 건영역과 근육영역 가압이 손가락 혈류속도에 미치는 효과)

  • Kim, Nam Yim;Hong, Kyunghi
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.488-496
    • /
    • 2019
  • This study investigated if the proper pressure level on the wrist tendon area and muscle area of the lower arm are within the same range by examining the responses of blood flow and subjective evaluation. Subjects consisted of 18 males in their 20s, and the experimental bands were custom-made by applying size measurements of each subject. In the experiment, a total of 5 steps were selected by reducing 10 (Step 1) to 50 (Step 5)% from the original body size in the circumferential direction. Blood flow was measured with a sensor attached to the tip of the finger inside the right hand while sitting in a chair for 15 minutes. Blood velocity began to increase (0.82 kPa) when the wrist circumference around tendon area was reduced by 20% (Step 2) and reached its maximum (1.72 kPa) at Step 4. However, the preferred subjective pressure was 1.36 kPa, which was less than the maximum pressure value of 1.72 kPa for Step 4. Blood velocity began to increase when pressure on the muscle area was 1.38 kPa and reached its maximum at 2.16 kPa; however, the most preferred clothing pressure was 1.71 kPa. The results of this study showed that the appropriate pressure level was higher in the muscle area than in the wrist tendon of the lower arm and indicated that graduated compression is favorable.

Effects of obesity adult participation in boxing diets on weight loss, blood pressure and blood sugar improvements

  • Park, Noh-hwan;Kim, Kwan-kyu
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.205-213
    • /
    • 2018
  • This research is about effects of obesity adults participating in 12weeks of boxing diets program on weight loss, blood pressure and blood sugar improvements. The exercise program was conducted three times a week with a maximum heart rate of 50 to 65 percent for first to forth weeks and 65 to 85 percent for fifth to twelfth. The study included 59 obese people in their 20s and 50s, with a BMI of 25kg/m2 or higher, blood pressure of 140/90mmHg, and high blood pressure and diabetes patients of 125 mg/dl per fasting blood sugar. The following results were obtained by observing the results before and after the boxing exercise program. High blood pressure, diabetes, high blood pressure + diabetes after 12 weeks showed significant weight, BMI and body fat reduction, as well as significant decrease in blood pressure and fasting blood sugar. Consequently, through this study, obese adults can lower their weight, blood pressure, and blasting fasting blood sugar through a 12-week high-strength boxing exercise program and it is believed to help improve and prevent obesity, cardiovascular disease and metabolic diseases.

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.

Obesity and Cardiopulmonary Function in Urban Adult Females (도시 성인 여성의 연령 및 건강지각에 따른 비만과 심폐기능 정도)

  • Chaung, Seung-Kyo;Kim, Chun-Gill
    • Women's Health Nursing
    • /
    • v.6 no.4
    • /
    • pp.594-605
    • /
    • 2000
  • The purpose of this study is to collect fundamental data for adult female health improvement based on urban adult female obesity and cardiopulmonary function. Surveyed were 859 adult females who visited a health improvement center in D district in Seoul between April, 1999, and December, 1999, and the resulting data are as follows: 1. The adult female mean BMI was $23.97{\pm}3.11kgm^2$, which comes within the range of overweight. Among them, BMI of the females aged 41-60, and over 60, were significantly higher. Mean percentage of body fat was $32.07{\pm}4.63$, and it significantly increased in accordance with age, recording the highest among those aged over 60. 2. The systolic blood pressure significantly increased in accordance with age, recording highest among those aged over 60. Those aged 41-60 and over 60 showed significantly higher diastolic blood pressure than those in their 20s and 30s; however, they had a significantly lower heart rate. Vital capacity and maximum oxygen intake significantly decreased in accordance with age, and those aged over 60 were lowest. 3. As to health perception, 20.6% of the subjects perceived themselves as healthy, and those who perceived themselves as unhealthy showed significantly higher BMI than those who perceived themselves to be of moderate health. 4. There were no significant differences in blood pressure, heart rate and maximum oxygen intake in accordance with health perception, but those who perceived themselves as healthy showed significantly higher vital capacity than those who didn't. 5. As to cardiopulmonary function in accordance with obesity, the obese group showed significantly higher systolic blood pressure than those whose weight was normal to overweight. The diastolic blood pressure of the normal weight group was the lowest, while the obese group showed significantly lower vital capacity and maximum oxygen intake. These findings indicate that the womens' health promotion program must include an effective strategy for preventing obesity, and strengthening cardiopulmonary function.

  • PDF