• Title/Summary/Keyword: max-n

Search Result 888, Processing Time 0.027 seconds

Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks

  • Turk, Ayse Gozde;Ulusoy, Mubin;Yuce, Mert;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.454-459
    • /
    • 2015
  • PURPOSE. To determine whether the fracture strengths and failure types differed between metal and zirconia frameworks veneered with pressable or layering ceramics. MATERIALS AND METHODS. A phantom molar tooth was prepared and duplicated in 40 cobalt-chromium abutments. Twenty metal (IPS d.SIGN 15, Ivoclar, Vivadent, Schaan, Liechtenstein) and 20 zirconia (IPS e.max ZirCAD, Ivoclar) frameworks were fabricated on the abutments. Each framework group was randomly divided into 2 subgroups according to the veneering material: pressable and layering ceramics (n=10). Forty molar crowns were fabricated, cemented onto the corresponding abutments and then thermocycled ($5-55^{\circ}C$, 10,000 cycles). A load was applied in a universal testing machine until a fracture occurred on the crowns. In addition, failure types were examined using a stereomicroscope. Fracture load data were analyzed using one-way ANOVA and Tukey HSD post-hoc tests at a significance level of 0.05. RESULTS. The highest strength value was seen in metal-pressable (MP) group, whereas zirconia-pressable (ZP) group exhibited the lowest one. Moreover, group MP showed significantly higher fracture loads than group ZP (P=.015) and zirconia-layering (ZL) (P=.038) group. No significant difference in fracture strength was detected between groups MP and ML, and groups ZP and ZL (P>.05). Predominant fracture types were cohesive for metal groups and adhesive for zirconia groups. CONCLUSION. Fracture strength of a restoration with a metal or a zirconia framework was independent of the veneering techniques. However, the pressing technique over metal frameworks resisted significantly higher fracture loads than zirconia frameworks.

Purification and Characterization of NADPH-Dependent Cr(VI) Reductase from Escherichia coli ATCC 33456

  • Bae, Woo-Chul;Lee, Han-Ki;Choe, Young-Chool;Jahng, Deok-Jin;Lee, Sang-Hee;Kim, Sang-Jin;Lee, Jung-Hyun;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and $37^{\circ}C$. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61% higher activity than NADH. The $K_m$ values for NADPH and NADH were determined to be 47.5 and 17.2 umol, and the $V_max$ values 322.2 and 130.7 umol Cr(VI) $min^{-1}mg^{-1}$ protein, respectively. The activity was strongly inhibited by N-ethylmalemide, $Ag^{2+},\;Cd^{2+},\;Hg^{2+}$, and $Zn^{2+}$. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains.

Purification and Characterization of an Intracellular NADH: Quinone Reductase from Trametes versicolor

  • Lee, Sang-Soo;Moon, Dong-Soo;Choi, Hyoung-T.;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • Intracellular NADH:quinone reductase involved in degradation of aromatic compounds including lignin was purified and characterized from white rot fungus Trametes versicolor. The activity of quinone reductase was maximal after 3 days of incubation in fungal culture, and the enzyme was purified to homogeneity using ion-exchange, hydrophobic interaction, and gel filtration chromatographies. The purified enzyme has a molecular mass of 41kDa as determined by SDS-PAGE, and exhibits a broad temperature optimum between $20-40^{\circ}C$, with a pH optimum of 6.0. The enzyme preferred FAD as a cofactor and NADH rather than NADPH as an electron donor. Among quinone compounds tested as substrate, menadione showed the highest enzyme activity followed by 1,4-benzoquinone. The enzyme activity was inhibited by $CuSO_4,\;HgCl_2,\;MgSO_4,\;MnSO_4,\;AgNO_3$, dicumarol, KCN, $NaN_3$, and EDTA. Its $K_m\;and\;V_{max}$ with NADH as an electron donor were $23{\mu}M\;and\;101mM/mg$ per min, respectively, and showed a high substrate affinity. Purified quinone reductase could reduce 1,4-benzoquinone to hydroquinone, and induction of this enzyme was higher by 1,4-benzoquinone than those of other quinone compounds.

Effects of a Pre-Exercise Meal on Plasma Growth Hormone Response and Fat Oxidation during Walking

  • Shin, Young-Ho;Jung, Hyun-Lyung;Ryu, Jong-Woo;Kim, Pan-Soo;Ha, Tae-Yeol;An, Ji-Yoon;Kang, Ho-Youl
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • The purpose of this study was to determine the effects of a pre-exercise meal on the plasma human growth hormone (hGH) response and fat oxidation during walking. Subjects (n=8) were randomly provided with either 1 g/kg body weight of glucose in 200 mL water (CHO) or 200 mL water alone (CON) 30 min prior to exercise and subsequently walked on a treadmill at 50% of VO2max for 60 min. Plasma hGH concentrations were significantly higher in subjects who received CHO compared to those who received CON at 15 and 30 min. The fat oxidation rate in the CHO was significantly lower than the CON while walking for 5~15, 25~35 and 45~55 min. Plasma FFA levels were also significantly lower in the CHO compared to the CON at 30, 45 and 60 min. Plasma glucose levels in the CHO were significantly lower while plasma insulin levels were significantly higher than in the CON at 15 and 30 min. Therefore, the results of this study suggest that the elevation of plasma hGH levels due to the intake of a pre-exercise meal may not be strongly related to fat oxidation and plasma free fatty acid (FFA) levels during low-intensity exercise.

Response of Soybean to Elevated $\textrm{CO}_2$ Concentrations and Temperatures at Two Levels of Nitrogen Application

  • Kim, Hong-Rae;Song, Hong-Keun;Lee, Sun-Joo;Kim, Seung-Hyun;Han, Sang-Joon;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • Effects of ambient and elevated $\textrm{CO}_2$ and high temperature, and their interactions with zero and applied nitrogen supply (NN-no nitrogen and AN-applied nitrogen) were studied on soybean (Glycine max L.) in 2001. In this experiment, elevated $\textrm{CO}_2$ (650 $\mu\textrm{mol}.\textrm{mol}^{-1}$) and temperature (+$5^{\circ}$) increased total dry mass at final harvest by 125% and 119% and seed weight per plant by 57% and 105% for NN and AN plants, respectively. Although the influence of temperature and temperature x $\textrm{CO}_2$ were not significant, the influences of $\textrm{CO}_2$ concentration and temperature x $\textrm{CO}_2$ concentration were significant on total dry weight and seed weight, respectively. In particular, seed weight per plant was increased, while weight per one hundred seed weight was decreased with elevated $\textrm{CO}_2$ and temperature. The N supply increased biomass and seed weight per soybean plants. The results of this study suggest that the long-term adaptation of soybean growth at an elevated $\textrm{CO}_2$ concentration and high temperature might potentially result in a increase in dry matter production and yield.

Purification and Cloning of an Extracellular Serine Protease from the Nematode-Trapping Fungus Monacrosporium cystosporium

  • Yang, Jin-Kui;Ye, Feng-Ping;Mi, Qi-Li;Tang, Song-Qing;Li, Juan;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.852-858
    • /
    • 2008
  • An extracellular protease (Mc1) was isolated from the nematode-trapping fungus Monacrosporium cystosporium by gel filtration, anion-exchange, and hydrophobic interaction chromatographies. This protease had a molecular mass of approximately 38 kDa and displayed an optimal activity at pH 7-9 and $56^{\circ}C$ (over 30 min). Its proteolytic activity was highly sensitive to the serine protease inhibitor PMSF (phenylmethylsulfonylfluoride, 0.1 mM), indicating that it belonged to the serine-type peptidase group. The Michaelis constant ($K_m$) and $V_max$ for substrate N-Suc-Ala-Ala-Pro-Phe-pNA were $1.67{\times}10^{-4}\;M$ and 0.6071 $OD_{410}$ per 30 s, respectively. This protease could degrade a broad range of substrates including casein, gelatin, BSA (bovine serum albumin), and nematode cuticle. Moreover, the enzyme could immobilize the free-living nematode Panagrellus redivivus and the pine wood nematode Bursaphelenchus xylophilus, suggesting that it might playa role in infection against nematodes. The encoding gene of Mc1 was composed of one intron and two exons, coding for a polypeptide of 405 amino acid residues. The deduced amino acid sequence of Mcl showed 61.4-91.9% identity to serine proteases from other nematode-trapping fungi. Our results identified that Mcl possessed biochemical properties including optimal reaction condition and substrate preference that are different from previously identified serine proteases.

Measurement of Photo-Neutron Dose from an 18-MV Medical Linac Using a Foil Activation Method in View of Radiation Protection of Patients

  • Yucel, Haluk;Cobanbas, Ibrahim;Kolbasi, Asuman;Yuksel, Alptug Ozer;Kaya, Vildan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.525-532
    • /
    • 2016
  • High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be $(1.17{\pm}0.06){\times}10^7n/cm^2$ per Gy at the phantom surface in a $20{\times}20cm^2$ X-ray field size. The maximum photo-neutron dose was measured to be $0.67{\pm}0.04$ mSv/Gy at $d_{max}=5cm$ depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of $10{\times}10cm^2$, $15{\times}15cm^2$, and $20{\times}20cm^2$ from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment.

Effect of Intercropped Corn and Soybean Silage on Nutritive Values, in vitro Ruminal Fermentation, and Milk Production of Holstein Dairy Cows

  • Kang, Juhui;Song, Jaeyong;Marbun, Tabita Dameria;Kwon, Chan Ho;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • This study was conducted to examine the effect of corn (Zea mays L.) - soybean (Glycine max L.) silage prepared by intercropping method on the nutritive value of the silage, in vitro rumen fermentation characteristics, dry matter degradability, as well as milk yield and milk composition of dairy cows. In a couple of experiments intercropped corn-soybean silage (CSBS) was compared with corn silage (CS) and/or Italian ryegrass hay (IRG). Numerically, CSBS had higher crude protein, ether extract, and lactic acid contents compared to CS. In vitro rumen fermentation analysis demonstrated that up to a 24-h incubation period, both CS and CSBS showed higher total gas production, ammonia N concentration, and dry matter degradability compared to IRG (p<0.05). The investigation on animals was conducted in a commercial dairy farm located in Gyeongju, South Korea, employing 42 Holstein cows that were divided into 2 group treatments: CS and CSBS in a completely randomized design. Although no significant difference was observed in milk yield, animals fed on CSBS showed significantly higher milk protein (p<0.05) and milk fat content (p<0.01), compared to animals fed on CS. Taken together, our findings indicate that corn-soybean silage that is cultivated, harvested, and prepared through intercropping can improve the protein content of the silage, and can also enhance in vitro rumen fermentation, dry matter degradability, and performance of dairy cattle.

Purification and Characterization of Metalloprotease from Serratia marcescens PPB-26 and Its Application for Detergent Additive

  • Thakur, Shikha;Sharma, Nirmal Kant;Thakur, Neerja;Bhalla, Tek Chand
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • In this study, the extracellular metalloprotease from Serratia marcescens PPB-26 was purified to homogeneity via ethanol fractionation and DEAE-cellulose column chromatography. Thus, a 3.8-fold purification was achieved with a 20% yield and specific activity of 76.2 U/mg. The purified protease was a 50-kDa monomer whose optimum pH and temperature for activity were 7.5 and $30^{\circ}C$ respectively; however, it was found to remain active in the 5-9 pH range and up to $40^{\circ}C$ for 6 h. The protease had a half-life of 15 days at $4^{\circ}C$, an optimum reaction time of 10 min, and an optimum substrate (casein) concentration of 0.25%. Furthermore, the Michaelis constant ($K_m$) and reaction velocity ($V_{max}$) of the protease were calculated to be 0.28% and $111.11{\mu}moles/(min{\cdot}mg)^{-1}$, respectively. The protease was stable when subjected to metal ions (2 mM), showing increased activity with most (especially $CoCl_2$ and $MgSO_4$ (30.54% increase)). It was also stable when exposed to oxidizing agents, bleaching agents, and detergents (5% v/v for 60 min). It retained 93% of its activity in non-ionic detergents (Tween-20, Tween-80, and Triton X-100). Moreover, wash performance analysis in commercial detergents (Ariel and Tide) showed that not only was the protease capable of protein stain removal, but also reduced cleaning time by 80% when added to detergents. Thus, the Serratia marcescens PPB-26 metalloprotease appears to be a promising new candidate as a laundry additive in the detergent industry.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.