Purification and Characterization of NADPH-Dependent Cr(VI) Reductase from Escherichia coli ATCC 33456

  • Bae, Woo-Chul (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Lee, Han-Ki (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Choe, Young-Chool (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Jahng, Deok-Jin (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Lee, Sang-Hee (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Sang-Jin (Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Lee, Jung-Hyun (Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Jeong, Byeong-Chul (Division of Bioscience and Bioinformatics, Myongji University)
  • 발행 : 2005.02.28

초록

A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and $37^{\circ}C$. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61% higher activity than NADH. The $K_m$ values for NADPH and NADH were determined to be 47.5 and 17.2 umol, and the $V_max$ values 322.2 and 130.7 umol Cr(VI) $min^{-1}mg^{-1}$ protein, respectively. The activity was strongly inhibited by N-ethylmalemide, $Ag^{2+},\;Cd^{2+},\;Hg^{2+}$, and $Zn^{2+}$. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains.

키워드

참고문헌

  1. Ackerley, D.F., C.F. Gonzalez, C.H. Park, R. Blake, M. Keyhan, and A. Matin. 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl. Environ. Microbiol. 70, 873-882 https://doi.org/10.1128/AEM.70.2.873-882.2004
  2. Bae, W.C., T.G. Kang, I.K. Kang, T.I. Won, and B.C. Jeong. 2000. Reduction of hexavalent chromium by Escherichia coli ATCC33456 in batch and continuous cultures. J. Microbiol. 38, 36-39
  3. Bopp, L.H. and H.L. Ehlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150, 426-431 https://doi.org/10.1007/BF00422281
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Horitsu, H., S. Futo, Y. Miyazawa, S. Ogai, and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant P. ambigua G-1. Agric. Biol. Chem. 51, 2417-2420 https://doi.org/10.1271/bbb1961.51.2417
  6. Kwak, Y.H., D.K. Lee, and H. B. Kim. 2004. Vibrio harveyi nitroreductase is also a chromate reductase. Appl. Environ. Microbiol. 69, 4390-4395
  7. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  8. Levis, A.G. and V. Bianchi. 1982. Mutagenic and cytogenetic effects of chromium compounds, p. 171-208. In S. Langard (ed.), Biological and environmental aspect of chromium. Elsvier science, Amsterdam
  9. Llovera, S., R. Bonet, M.D. Simon-Pujol, and F. Congregado. 1993. Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl. Environ. Microbiol. 59, 3516-3518
  10. Lovely, D.R. and E.J.P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl. Environ. Microbiol. 60, 726-728
  11. Miura, K., Y. Tomioka, H. Suzuki, M. Yonezawa, T. Hishinuma, and M. Mizugaki. 1997. Molecular cloning of the nemA gene encoding N-ethylmalemide reductase from Escherichia coli. Biol. Pharm. Bull. 20, 110-112 https://doi.org/10.1248/bpb.20.110
  12. Mizugaki, M., T. Unama, T. Shiraishi, T. Nishimaki, and H. Yamanaka. 1981. Studied on the metabolism of unsaturated fatty acid N-ethylmalemide reducing activity in Escherichia coli K-12. Chem. Pharm. Bull. 29, 570-573 https://doi.org/10.1248/cpb.29.570
  13. Myers, C.R., B.P. Carstens, W.E. Antholine, and J.M. Myers. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanela putrefaciens MR-1. J. Appl. Microbiol. 88, 98-106 https://doi.org/10.1046/j.1365-2672.2000.00910.x
  14. Oh, Y.S. and S.C. Choi. 1997. Reduction of hexavalent chromium by P. aeruginosa HP014. J. Microbiol. 35, 25-29
  15. Park, C.H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Martin. 2000. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66, 1788-1795 https://doi.org/10.1128/AEM.66.5.1788-1795.2000
  16. Pettrilli, F.L. and W. Miller. 1977. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl. Environ. Microbiol. 33, 805-809
  17. Shen, H. and Y.T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 59, 3771-3777
  18. Silver, S. and T.G. Kinscherf. 1982. Genetic and biochemical basis for microbial transformations and detoxification of mercury and mercurial compounds, p. 85-103. In A.M. Chakrabarty, (ed.), Biodegradation and detoxification of environmental pollutants. CRC Press. Inc., Boca Raton. Florida
  19. Suzuki, T. 1996. Pseudomonas sp. chrR gene for Cr(VI) reductase. Unpublished, obtained from DDBJ/EMBL/Genbank., Acession No. D83142.1
  20. Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, and M. Okazaki. 1992. NAD(P)H-dependent chromium(VI) reductase of P. ambigua G-1: a Cr(VI) intermediateis formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174, 5340-5345 https://doi.org/10.1128/jb.174.16.5340-5345.1992
  21. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354
  22. Urone, P.F. 1955. Stability of colorimetric reagent for chromium, Sdiphenylcarbazide, in various solvents. Anal. Chem. 27, 1354-1355 https://doi.org/10.1021/ac60104a048
  23. Wang, P.C., T. Mori, K. Komori, M. Sasatsu, K. Toda, and H. Ohtake. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55, 1665-1669
  24. Wang, P.C., T. Mori, K. Toda, and H. Ohtake. 1990. Membrane associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172, 1670-1672 https://doi.org/10.1128/jb.172.3.1670-1672.1990
  25. Wang, Y.T. and H. Shen. 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14, 159-164 https://doi.org/10.1007/BF01569898
  26. Wang, Y.T. and C. Xiao. 1995. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res. 29, 2467-2474 https://doi.org/10.1016/0043-1354(95)00093-Z