• 제목/요약/키워드: matrix stiffness method

검색결과 569건 처리시간 0.025초

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 손인수;안태수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

Use of vibration characteristics to predict the axial deformation of columns

  • Moragaspitiya, H.N. Praveen;Thambiratnam, David P.;Perera, Nimal J.;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.73-88
    • /
    • 2014
  • Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.

보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强) (Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells)

  • 장창두;노완
    • 대한조선학회지
    • /
    • 제24권1호
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF

곡선강박스거더의 뒤틀림 해석 및 격벽간격산정 (A Study on the Distortional Analysis of Curved Steel Box Girders)

  • 구민세;이호경;김대홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.401-408
    • /
    • 2001
  • The main objective of this study is to analyze the distortion of curved steel box girders. For the distortional analysis of steel box girders, two approaches are presented. One is the development of approximate formulas obtained by applying Ritz method. The other is the formulation of stiffness matrix which is derived from the exact solution of the differential equation for distortion. Distortional analysis is carried out by utilizing 3-dimensional elements of a structural analysis computer program (SAP2000). The present analysis focuses on the distortional stress and the effects of the diaphragm. The results of several example cases are compared with those by the Nakai, Sakai, Heins, and Oleinik's theory and get the effect of diaphragm spacing on the distortional warping stress of the curved steel box girder.

  • PDF

무한요소를 이용한 반무한영역의 추계론적 유한요소해석 (Stochastic FE analysis of semi-infinite domain using infinite elements)

  • 최창근;노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 1998
  • In this paper the stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is expanded to include the infinite finite elements. The semi-infinite domain can be thought as to have more uncertainties than the ordinary finite domain in material constants, which shows the needs of and the importance of the stochastic finite element analysis. The Bettess's infinite element is adopted with the theoretical decomposition of the strain matrix to calculate the deviatoric stiffness of the semi-infinite domains. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions giving the rational results which should be considered in the design of structures on semi-infinite domains.

  • PDF

EFFECTS OF PARTICLE RESONANCE ON DISPERSION OF ELASTIC WAVES IN PARTICULATE COMPOSITES

  • Kim, J.Y.;Ih, J.G.;Lee, B.H.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.734-739
    • /
    • 1994
  • Elastic wave propagation in discrete random medium is studied to evaluate the effects of particle resonance on dispersion and attenuation of composite materials containing spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be obtained from proposed self-consistent method. It can be observed that the abrupt increase of effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest resonance of particles, whereas those in high frequency region are due to higher ones. The lowest resonance is mainly caused by the density mismatch and higher resonances by the stiffness mismatch between matrix and particles. The dispersion and attenuation of elastic waves in particulate composites are affected by the lowest resonance much than by higher ones.

  • PDF

강뼈대 구조물의 소성안정 해석에 관한 이론적 연구 (A Theoretical Investigation on Shakedown Analysis of Framed Structures)

  • 이종석
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.71-77
    • /
    • 1988
  • For the collapse of structures due to the variable repeated load, two types of collapse mechanisms, i.e., incremental collapse and alternating plasticity, exist. Under the similar variable repeated loading conditions there exists shakedown state in the structures. In shakedown state, the number of plastic hinges are not increased and all further loading will be resulted in the elastic moment changes. Namely, under the shakedown state, structures do not collapse. In this investigation, shakedown analysis are performed by composing new computer programs. Basic theories employed to compose the programs are as follows. 1. Newton-Raphson methods are added to the existing matrix method for the plastic analysis. 2. An effort to construct the stiffness of axial and bending springs attached at both ends of the member has been made. By using the programs developed, it is possible to anticipate the collapse mechanisms (Incremental collapse, alternating plasticity). Lastly for the verification of performance of the program, demonstration examples have been solved and the results are compared with other sources.

  • PDF

직사각형 재하판을 이용한 평판재하시험에 의한 지반의 합성탄성계수 추정에 관한 연구 (The evaluation of complex elastic modulus of the foundation by the rectangular plate loading test)

  • 강차훈;조현영;정진환;김성도
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.166-173
    • /
    • 2000
  • This paper describes the method of evaluating the elastic modulus of soil medium by using the Retangular Plate Loading Test. The foundaton is considered to be the elastic half-space. The stiffness matrix of elastic half space is drived using Boussinesq's analytical soulution. A numerical examples are presented to verify the validity of this procedure. Also, the numerical results are compared with those of the existing study results. The procedure proposed in this theses can be applied to the design of concrete paving resting on the elastic foundation

  • PDF

구조시스템의 동적응답을 이용한 역해석에서의 악조건 특성 규명 (On the III-condition of Reverse Process from Structural Dynamic Response Data)

  • 양경택
    • 한국전산구조공학회논문집
    • /
    • 제12권1호
    • /
    • pp.83-94
    • /
    • 1999
  • 본 연구에서는 시스템의 해석적 모델과 측정된 응답을 이용하여 입력하중을 추정하는 역해석 기법을 유한요소모델과 같은 해석적 모델을 알고 있는 경우와 주파수응답함수와 같은 실험적 모델을 알고 있는 경우에 대하여 제시하였으며 이때 발생되는 수학적 악조건의 특성을 규명하였다. 역해석시 발생되는 수학적 악조건은 시스템의 동강성행렬과 측정위치에 의해 결정되는 특성행렬의 조건수에 따라 결정되며 역해석기법을 공학문제에 적용하기 위하여는 특성행렬의 조건수가 낮아지도록 주자유도 및 측정점을 선택하여야 하고 특히 공진영역 및 반공진영역에서는 필연적으로 악조건이 발생됨을 알 수 있었다. 수학적 악조건의 특성을 명확히 규명하기 위하여 간단한 수치해석을 통하여 그 결과를 제시하였다.

  • PDF

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1995년도 제4회 학술강연회논문집
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF