• Title/Summary/Keyword: matrix modification

Search Result 270, Processing Time 0.023 seconds

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites

  • Kim, Minjae;Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.

Development of km class Bi-2223/Ag HTS tapes (1km급 Bi-2223/Ag 고온초전도 선재 개발 연구)

  • 하동우;오상수;김상철;양주생;황선역;이동훈;최종규;하홍수;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.63-66
    • /
    • 2003
  • 1 km length of Bi-2223/Ag superconducting wires were fabricated by stacking, drawing process with advanced heat-treatment schedules. Intermediate annealing was carried out to increase the homogeneity and uniformity of the superconducting filaments embedded in the silver matrix. Phase modification from tetragonal to orthorhombic Bi-2212 by pre heat treatment(PHT) was executed to improve the texture and phase transformation of Bi-2223. Drawing stress was measured to Predict the sausaging and stress limit, Rolling parameters such as thickness, width and winding tension were investigated to roll the tape with uniformity. Critical current of 1 km length of superconducting tapes was measured about 50 A continuously after final sintering.

  • PDF

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

Study on Property Modification with Fire Retardant Content in the Manufacture of Compounds for Cable Sheath (전선피복용 컴파운드의 제조에서 난연제의 첨가량에 따른 물성 변화 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.47-51
    • /
    • 2019
  • The three different polymer compounds were manufactured with the three different fire retardant (silane coated magnesium dihydroxide) contents, 180, 200, 220 phr, for making cable sheath for ship industry. In the research, ethylene-vinylacetate, polyethylene as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, plasticizer, and other additives. In the evaluation. ΔT, Mooney viscosity, and tensile strength increased with the content of fire retardant. But it was found that too much fire retardant damaged aging resistance and cold resistance of the polymer compound.

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.206-206
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.206-212
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

The Study on the Control of Robot Manipulator by Modification of Reference Trajectory (기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구)

  • Min, Kyoung-Won;Lee, Jong-Soo;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

Radiation-Crosslinked Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix Hydrogel Films to Prevent Peritoneal Adhesions with physical properties and anti-adhesivity (방사선 가교된 유착방지용 Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix 수화젤 필름의 물리적 특성 및 부착 방지 평가)

  • Jeong, Sung In;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Song, Bo Ram;Kim, Young Jick;Min, Byoung Hyun;Kim, Moon Suk;Lim, Youn-Mook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • In this study, intermolecular crosslinked carboxymethyl cellulose sodium salt (CMC) and porcine Cartilage Acellular Matrix (PCAM) blended hydrogel films for anti-adhesive barriers were prepared by gamma-ray radiation. The effects of the CMC/PCAM concentration and blending ratio on the morphology, gel fraction, gel strength, and degree of swelling were determined. The results indicated that crosslinked CMC/PCAM films show significantly lower the gel-fraction than CMC films. The degree of attachment and proliferation of human vascular endothelial cells on CMC/PCAM films was lower than the CMC films. We show the capacity of the CMC and PCAM to be hydrogel films, and the ability to reduce cell adhesion and proliferation on these films by modification with cell anti-adhesion molecules of PCAM. In conclusion, this study suggests that radiation cross-linked CMC/PCAM hydrogel films endowed with anti-adhesion ligands may allow for improved regulation of cell anti-adhesion behavior for prevent peritoneal adhesions.

Scalable Fabrications of Mixed-Matrix Membranes via Polymer Modification-Enabled In Situ Metal-Organic Framework Formation for Gas Separation: A Review (고분자 변형으로 가능해진 MOF의 원위치 형성을 이용한 혼합기질 기체분리막의 대면적화 가능한 제막)

  • Sunghwan Park;Young-Sei Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Mixed-matrix membranes (MMMs), which are composed of a polymer matrix filled with high-performance fillers as a dispersed phase, have been intensively studied for gas separations for the past 30 years. It has been demonstrated that MMMs exhibit superior gas separation performance compared to polymer membranes and are more scalable than polycrystalline membranes. Despite their potential, the commercialization of MMMs has yet to be reported due to several challenging issues. One of the major challenges of MMMs is the non-ideal interface between the continuous polymer phase and dispersed phase, which can result in defect formation (i.e., interfacial voids, etc.). With respect, many MMM studies have focused on addressing the issues through scientific approaches. The engineering approaches for facile and effective large-scale fabrication of MMMs, however, have been relatively underestimated. In this review paper, a novel strategy for fabricating MMMs in a facile and scalable manner using in situ metal-organic framework (MOF) formation is introduced. This new MMM fabrication methodology can effectively address the issues facing current MMMs, likely facilitating the commercialization of MMMs.