DOI QR코드

DOI QR Code

Scalable Fabrications of Mixed-Matrix Membranes via Polymer Modification-Enabled In Situ Metal-Organic Framework Formation for Gas Separation: A Review

고분자 변형으로 가능해진 MOF의 원위치 형성을 이용한 혼합기질 기체분리막의 대면적화 가능한 제막

  • Sunghwan Park (School of Energy Material & Chemical Engineering, Kyungpook National University) ;
  • Young-Sei Lee (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 박성환 (경북대학교 에너지 신소재.화학공학부) ;
  • 이영세 (경북대학교 미래과학기술융합학과)
  • Received : 2023.04.10
  • Accepted : 2023.04.20
  • Published : 2023.06.10

Abstract

Mixed-matrix membranes (MMMs), which are composed of a polymer matrix filled with high-performance fillers as a dispersed phase, have been intensively studied for gas separations for the past 30 years. It has been demonstrated that MMMs exhibit superior gas separation performance compared to polymer membranes and are more scalable than polycrystalline membranes. Despite their potential, the commercialization of MMMs has yet to be reported due to several challenging issues. One of the major challenges of MMMs is the non-ideal interface between the continuous polymer phase and dispersed phase, which can result in defect formation (i.e., interfacial voids, etc.). With respect, many MMM studies have focused on addressing the issues through scientific approaches. The engineering approaches for facile and effective large-scale fabrication of MMMs, however, have been relatively underestimated. In this review paper, a novel strategy for fabricating MMMs in a facile and scalable manner using in situ metal-organic framework (MOF) formation is introduced. This new MMM fabrication methodology can effectively address the issues facing current MMMs, likely facilitating the commercialization of MMMs.

혼합기질막(mixed-matrix membrane, MMM)은 고성능 충전제가 고분자 기질에 분산된 구조로, 지난 30년간 이를 이용한 기체분리 연구가 집중적으로 수행되었다. 일반적으로 MMM은 고분자 막보다 우수한 기체 분리 성능을 가지고 있으며, 다결정 막에 비해 좋은 확장성을 보인다. 그러나 이러한 잠재성에도 불구하고, MMM의 상용화는 여러 가지 어려운 문제들로 인해 지연되고 있다. MMM의 주요 문제 중 하나는 충전제와 고분자 사이의 부적절한 계면 상호작용으로 결함(즉, 개면 공극 등)이 형성될 수 있다는 것이다. 따라서 많은 MMM 연구에서 이러한 계면의 문제를 해결하기 위한 전략이 제시되었다. 하지만 계면상의 상호작용으로 MMM이 가진 문제점들을 해결하려는 과학적 접근에 비해 손쉽고 효과적으로 대면적의 MMM을 제조하기 위한 공학적 접근은 상대적으로 간과되어 왔다. 본 총설에서는 MMM의 대면적화를 위한 공학적인 접근 중 하나인 고분자 변형을 통해 가능해진 금속-유기 골격체(metal-organic framework, MOF)의 원위치 형성을 이용한 MMM 제막 방법을 소개하고자 한다. 이 새로운 제막법은 현재 MMM이 직면하고 있는 문제들을 공학적인 접근으로 효과적으로 해결하여 MMM의 상용화를 촉진시킬 수 있다.

Keywords

Acknowledgement

이 논문은 2022학년도 경북대학교 신임교원 정착연구비에 의하여 연구되었음.

References

  1. R. Spillman, Economics of gas separation membrane processes, In: R. D. Noble and S. A. Stern (eds.). Membrane Science and Technology, 589-667, Elsevier, Amsterdam, Netherlands (1995).
  2. B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
  3. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  4. K. Vanherck, G. Koeckelberghs, and I. F. J. Vankelecom, Crosslinking polyimides for membrane applications: A review, Prog. Polym. Sci., 38 874-896 (2013). https://doi.org/10.1016/j.progpolymsci.2012.11.001
  5. M. A. Carreon, S. G. Li, J. L. Falconer, R. D. Noble, Aluminasupported SAPO-34 membranes for CO2/CH4 separation, J. Am. Chem. Soc., 130, 5412 (2008).
  6. M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Q. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. DeJaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann, and M. Tsapatsis, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets, Nature, 543, 690 (2017).
  7. W. J. Koros and R. Mahajan, Pushing the limits on possibilities for large scale gas separation: Which strategies?, J. Membr. Sci., 175, 181-196 (2000). https://doi.org/10.1016/S0376-7388(00)00418-X
  8. B. K. Nandi, R. Uppaluri, and M. K. Purkait, Preparation and characterization of low cost ceramic membranes for micro-filtration applications, Appl. Clay Sci., 42, 102-110 (2008). https://doi.org/10.1016/j.clay.2007.12.001
  9. J. K. Neubert, Das verhalten von kautschuk zu kohlensaure, Zeitschrift fur Chemie und Industrie der Kolloide, 11, 136-136 (1912). https://doi.org/10.1007/BF01465813
  10. G. Christen, A. Fabre, and A. Faure, Membrane heterogene pour le fractionnement de melanges fluides, et son emploi, France Patent 2079460A5, (1971).
  11. S. Kulprathipanja, R. W. Neuzil, and N. N. L, Separation of fluids by means of mixed matrix membranes, US Patent 4740219A (1988).
  12. H. Vinh-Thang and S. Kaliaguine, A comprehensive computational strategy for fitting experimental permeation data of mixed matrix membranes, J. Membr. Sci., 452, 271-276 (2014). https://doi.org/10.1016/j.memsci.2013.10.020
  13. M. W. Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N-2, J. Membr. Sci., 502, 21-28 (2016). https://doi.org/10.1016/j.memsci.2015.12.022
  14. D. R. Kemp and D. R. Paul, Gas sorption in polymer membranes containing adsorptive fillers, J. Polym. Sci., Polym. Phys. Ed., 12, 485-500 (1974). https://doi.org/10.1002/pol.1974.180120304
  15. R. Mahajan and W. J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Ind. Eng. Chem. Res., 39, 2692-2696 (2000). https://doi.org/10.1021/ie990799r
  16. S. Takahashi and D. R. Paul, Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix, Polymer, 47, 7519-7534 (2006). https://doi.org/10.1016/j.polymer.2006.08.029
  17. Shu, S. Husain, and W. J. Koros, Formation of nanostructured zeolite particle surfaces via a Halide/Grignard route, Chem. Mater., 19, 4000-4006 (2007). https://doi.org/10.1021/cm070969n
  18. M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci., 361, 28-37 (2010). https://doi.org/10.1016/j.memsci.2010.06.017
  19. S. Park, M. R. A. Hamid, and H. K. Jeong, Highly propylene-selective mixed-matrix membranes by in situ metal organic framework formation using a polymer-modification strategy, ACS Appl. Mater. Inter., 11, 25949-25957 (2019). https://doi.org/10.1021/acsami.9b07106
  20. W. J. Koros and C. Zhang, Materials for next-generation molecularly selective synthetic membranes, Nat. Mater., 16, 289-297 (2017). https://doi.org/10.1038/nmat4805
  21. H. Liu, P. Guo, T. Regueira, Z. H. Wang, J. F. Du, and G. J. Chen, Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence, J. Phys. Chem. C, 120, 13287-13294 (2016). https://doi.org/10.1021/acs.jpcc.6b03772
  22. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci., 389, 34-42 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  23. R. L. Burns and W. J. Koros, Defining the challenges for C3H6/ C3H8 separation using polymeric membranes, J. Membr. Sci., 211, 299-309 (2003). https://doi.org/10.1016/S0376-7388(02)00430-1
  24. C. Colling, G. Huff, and J. Bartels, Processes using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture, US Patent 20040004040A1 (2002).
  25. P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, and S. A. T. Redfern, Phase transitions in zeolitic imidazolate framework 7: The importance of framework flexibility and guest-induced instability, Chem. Mater, 26, 1767-1769 (2014). https://doi.org/10.1021/cm500407f
  26. M. He, J. F. Yao, L. X. Li, K. Wang, F. Y. Chen, and H. T. Wang, Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition, ChemPlusChem, 78, 1222-1225 (2013). https://doi.org/10.1002/cplu.201300193
  27. S. Park, K. Y. Cho, and H. K. Jeong, Polyimide/ZIF-7 mixed-matrix membranes: understanding thein situconfined formation of the ZIF-7 phases inside a polymer and their effects on gas separations, J. Mater. Chem. A, 8, 11210-11217 (2020). https://doi.org/10.1039/D0TA02761H
  28. J. A. Thompson, C. R. Blad, N. A. Brunelli, M. E. Lydon, R. P. Lively, C. W. Jones, and S. Nair, Hybrid zeolitic imidazolate frameworks: Controlling framework porosity and functionality by mixed-linker synthesis, Chem. Mater., 24, 1930-1936 (2012). https://doi.org/10.1021/cm3006953
  29. F. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim, and H. K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers, J. Mater. Chem. A, 5, 6090-6099 (2017). https://doi.org/10.1039/C6TA11170J
  30. F. Hillman and H. K. Jeong, Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations, ACS Appl. Mater. Inter., 11, 18377-18385 (2019). https://doi.org/10.1021/acsami.9b02114
  31. S. Park, and H. K. Jeong, In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation, J. Membr. Sci., 596, 117689 (2020).
  32. S. Park and H. K. Jeong, Cross-linked polyimide/ZIF-8 mixed-matrix membranes by in situ formation of ZIF-8: Effect of cross-linking on their propylene/propane separation, Membranes-Basel, 12, 964 (2022).
  33. R. P. Lively, M. E. Dose, L. R. Xu, J. T. Vaughn, J. R. Johnson, J. A. Thompson, K. Zhang, M. E. Lydon, J. S. Lee, L. Liu, Z. S. Hu, O. Karvan, M. J. Realff, and W. J. Koros, A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas, J. Membr. Sci., 423, 302-313 (2012).
  34. S. Park and H. K. Jeong, Transforming polymer hollow fiber membrane modules to mixed-matrix hollow fiber membrane modules for propylene/propane separation, J. Membr. Sci., 612, 118429 (2020).