Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.034

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites  

Kim, Minjae (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yeongseon (Department of Chemistry and Chemical Engineering, Inha University)
Baeck, Sung Hyeon (Department of Chemistry and Chemical Engineering, Inha University)
Shim, Sang Eun (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 34-40 More about this Journal
Abstract
In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.
Keywords
graphene; epoxy; composite; surface treatment; thermal conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zheng C, Fan Z, Wei T, Luo G. Temperature dependence of the conductivity behavior of graphite nanoplatelet-filled epoxy resin composites. J Appl Polym Sci, 113, 1515 (2009). http://dx.doi.org/10.1002/app.30009.   DOI
2 Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 14, 643 (2004). http://dx.doi.org/10.1002/adfm.200305162.   DOI
3 Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 40, 5967 (1999). http://dx.doi.org/10.1016/S0032-3861(99)00166-4.   DOI
4 Fox RT, Wani V, Howard KE, Bogle A, Kempel L. Conductive polymer composite materials and their utility in electromagnetic shielding applications. J Appl Polym Sci, 107, 2558 (2008). http://dx.doi.org/10.1002/app.27317.   DOI
5 Moisala A, Li Q, Kinloch IA, Windle AH. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol, 66, 1285 (2006). http://dx.doi.org/10.1016/j.compscitech.2005.10.016.   DOI
6 Pumera M, Merkoci A, Alegret S. Carbon nanotube-epoxy composites for electrochemical sensing. Sens Actuators B, 113, 617 (2006). http://dx.doi.org/10.1016/j.snb.2005.07.010.   DOI
7 Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC. Enhanced thermal conductivity in a hybrid graphite nanoplatelet: carbon nanotube filler for epoxy composites. Adv Mater, 20, 4740 (2008). http://dx.doi.org/10.1002/adma.200800401.   DOI
8 Hindermann-Bischoff M, Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites: experimental evidence of the change of cluster connectivity in the PTC effect. Carbon, 39, 375 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00130-5.   DOI
9 Wang S, Tambraparni M, Qiu J, Tipton J, Dean D. Thermal expansion of graphene composites. Macromolecules, 42, 5251 (2009). http://dx.doi.org/10.1021/ma900631c.   DOI
10 Ghosh G, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett, 92, 151911 (2008). http://dx.doi.org/10.1063/1.2907977.   DOI
11 Xie SH, Liu YY, Li JY. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett, 92, 243121 (2008). http://dx.doi.org/10.1063/1.2949074.   DOI   ScienceOn
12 Ma PC, Kim JK, Tang BZ. Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 44, 3232 (2006).   DOI
13 Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet: epoxy composite thermal interface materials. J Phys Chem C, 111, 7565 (2007). http://dx.doi.org/10.1021/jp071761s.   DOI
14 Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Appl Phys Lett, 80, 2767 (2002). http://dx.doi.org/10.1063/1.1469696.   DOI
15 Putnam SA, Cahill DG, Ash BJ, Schadler LS. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J Appl Phys, 94, 6785 (2003). http://dx.doi.org/10.1063/1.1619202.   DOI
16 Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 46, 806 (2008). http://dx.doi.org/10.1016/j.carbon.2008.02.008.   DOI
17 Park OK, Jeevananda T, Kim NH, Kim SI, Lee JH. Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta Mater, 60, 551 (2009). http://dx.doi.org/10.1016/j.scriptamat.2008.12.005.   DOI
18 Zhao W, Song C, Pehrsson PE. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc, 124, 12418 (2002). http://dx.doi.org/10.1021/ja027861n.   DOI
19 Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44, 1898 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.026.   DOI
20 Vast L, Philippin G, Destree A, Moreau N, Fonseca A, Nagy JB, Delhalle J, Mekhalif Z. Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes. Nanotechnology, 15, 781 (2004). http://dx.doi.org/10.1088/0957-4484/15/7/011.   DOI
21 Deng Y, Deng C, Yang D, Wang C, Fu S, Zhang X. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem Commun, 5548 (2005). http://dx.doi.org/10.1039/B511683J.http://dx.doi.org/10.1016/j.carbon.2006.06.032.
22 Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol, 67, 2965 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.05.006.   DOI
23 Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of $Al_2O_3$ and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta, 430, 155 (2005). http://dx.doi.org/10.1016/j.tca.2004.12.024.   DOI   ScienceOn
24 Liu CH, Huang H, Wu Y, Fan SS. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl Phys Lett, 84, 4248 (2004). http://dx.doi.org/10.1063/1.1756680.   DOI
25 Tanaka S, Chao Y, Araki S, Miyake Y. Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. J Membr Sci, 348, 383 (2010). http://dx.doi.org/10.1016/j.memsci.2009.11.033.   DOI
26 Lee MY, Park WH, Lenz RW. Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer, 41, 1703 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00347-X.   DOI
27 Dhawade P, Jagtap R. Comparative study of physical and thermal properties of chitosan-silica hybrid coatings prepared by sol-gel method. Der Chem Sin, 3, 589 (2012).