• Title/Summary/Keyword: matrix force method

Search Result 301, Processing Time 0.03 seconds

Nonlinear elements position detecting by error matrix method (오차행렬에 의한 비선형 요소 위치 파악에 관한 연구)

  • 변언섭;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1104-1111
    • /
    • 1990
  • A method to identify nonlinear elements position of a nonlinear system is presented. Nonlinear elements position can be identified by an equivalent error damping and stiffness matrices which are based on the equivalent linearization technique. The procedures of this technique are: (1) Obtain input force and system response. (2) Define error between the actual and linearized restoring forces. (3) Calculate linearized damping and stiffness coefficients to minimize the square error sum. Several examples are tested and found that these methods are very effective not only to locate the nonlinear elements position but also to identify the degree of nonlinearity qualitatively. Nonlinear type can be qualitatively identified by examining the plots of restoring force vs equivalent state values.

A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation (비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법)

  • Kim, Byoyng-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

Plastic Design Method for Steel Skeletal Structure based on the Least Norm Stress Field (최소노름 응력장를 이용한 구조물의 소성해석법)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.131-137
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

Multi-objective Optimization for Force Design of Tensegrity Structures (텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • A multi-objective optimization approach is presented for force design of tensegrity structures. The geometry of the structure is given a priori. The design variables are the member forces, and the objective functions are the lowest eigenvalue of the tangent stiffness matrix that is to be maximized, and the deviation of the member forces from the target values that is to be minimized. The multi-objective programming problem is converted to a series of single-objective programming problems by using the constraint approach. A set of Pareto optimal solutions are generated for a tensegrity grid to demonstrate the validity of the proposed method.

  • PDF

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Robust Adaptive Control Simulation of Wire-Suspended Parallel Manipulator

  • Farahani, Hossein S.;Kim, Bo-Hyun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents an adaptive control method based on parameter linearization for incompletely restrained wire-suspended mechanisms. The main purpose of this control method is utilizing it in a walking assist service robot for elderly people. This method is computationally simple and requires neither end-effector acceleration feedback nor inversion of estimated inertia matrix. In the proposed adaptive control law, mass, moment of inertia and external force and torque on the end-effector are considered as components of parameter adaptation vector. Nonlinear simulation for walking an elderly shows the effectiveness of the parameter adaptation law.

  • PDF

A study on the synthesis and characterization of PI/$\textrm{TiO}_2$ nano-composite (폴리이미드/$\textrm{TiO}_2$ 나노 복합재의 합성 및 특성에 관한 연구)

  • 이중희;이봉신;허석봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.137-140
    • /
    • 2001
  • Oragnic/inorganic hybrid materials prepared by sol-gel method have rapidly become a fasci nating research field in materials science. In this study, Polyimide/$\textrm{TiO}_2$ composites were synthesized from nano-sized anatase $\textrm{TiO}_2$ and two types of Polyimide (BTDA-PPD, PMDA-ODA) by Sol-gel method. Nano-sized $\textrm{TiO}_2$ particles were prepared from $\textrm{TiOEt}_4$ solution. The composites were charcaterized by using XRD, TGA, IR, TEM, and Atomic Force Microscope(AFM). $\textrm{TiO}_2$ nano particles were dispersed well in polyimide matrix and the thermal stability of polyimide was improved with $\textrm{TiO}_2$ nano-sized particles.

  • PDF

Study on Method of Crack Detection of L-beams with Coupled Vibration (연성진동하는 L형 단면 보의 크랙 검출 방법에 대한 연구)

  • Son, In-Soo;Cho, Jeong-Rae;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.78-86
    • /
    • 2010
  • This paper aims to investigate the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations. In addition, a theoretical method for detection of the crack position and size in a cantilever L-beams is presented based on natural frequencies. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. In order to detect the crack of L-beams, the effect of spring coefficients for bending moment and torsional force is included. In this study, the differences between the actual data and predicted positions and sizes of crack are less than 0.5% and 6.7% respectively.