• 제목/요약/키워드: matrix factorization

검색결과 309건 처리시간 0.025초

순환 행렬 분해에 의한 DCT/DFT 하이브리드 구조 알고리듬 (DCT/DFT Hybrid Architecture Algorithm Via Recursive Factorization)

  • 박대철
    • 융합신호처리학회논문지
    • /
    • 제8권2호
    • /
    • pp.106-112
    • /
    • 2007
  • 본 논문은 순환 행렬 분해에 의한 DCT와 DFT의 고속 계산을 위한 하이브리드 아키텍쳐 알고리듬을 제안한다. DCT-II와 DFT 변환 행렬의 순환 분해는 알고리듬적으로 구현하기가 유사한 구조를 제공하며 이것은 단순히 스위칭 모드의 제어에 의해 공통 아키텍쳐를 사용할 수 있게 한다. 두 변환간의 연계는 행렬 순환 공식에 기초하여 유도되었다. DCT/DFT 행렬 분해를 위한 하이브리드 구조 설계를 가능하도록 생성 행렬, 삼각함수 항등식 과 관계식을 사용하여 유도되었다. DCT/DFT 하이브리드 아키텍쳐를 수용하는 쿨리-투키 유형의 고속처리 아키텍쳐에 대한 데이터 흐름도를 작성하였다. 이 데이터 흐름도로부터 적절한 크기의 N에 대해 제안한 알고리듬의 계산 복잡도는 기존의 고속 DCT 알고리듬과 비교할만하다. 다른 직교변환 계산에 FFT 구조의 다중 모드 사용 확장을 위해 좀더 확장된 연구가 필요하다.

  • PDF

빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구 (A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization)

  • 이석진
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.489-498
    • /
    • 2018
  • 본 논문에서는 잔향이 존재하는 환경에서 낮은 도플러 주파수를 가지는 지속파 능동 소나의 반사음이 수신될 때, 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 이를 탐지하는 기법에 대한 연구를 수행하였다. 지속파 능동 소나에서 수신기가 이동하는 경우 도플러 효과로 인하여 잔향 주파수 대역이 넓어지며, 이 경우 낮은 도플러 주파수를 가지는 표적 반사음은 잔향에 의해 방해를 받는다. 본 논문에서 고안한 알고리즘은 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 수신음의 다채널 스펙트로그램을 주파수 기저, 시간 기저, 빔형성기 이득으로 분석한 후, 적절한 기저를 선택하여 반사음의 주파수, 시간, 그리고 방위를 추정한다. 해당 알고리즘의 동작을 분석하기 위하여 다양한 신호대잔향음 환경에서의 시뮬레이션을 수행하였으며, 분석 결과 고안한 알고리즘이 주파수, 시간, 그리고 방위를 추정할 수 있으나 낮은 신호대잔향비 환경에서 성능이 저하됨을 확인할 수 있었다. 시뮬레이션 결과에 따르면, 향후 기저 선택 알고리즘을 수정함으로써 성능을 개선할 수 있을 것이라 예상된다.

양상태 능동 소나를 위한 비음수 행렬 분해 기반의 잔향 제거 기법의 성능 개선 (Improvement of non-negative matrix factorization-based reverberation suppression for bistatic active sonar)

  • 이석진;이용곤
    • 한국음향학회지
    • /
    • 제41권4호
    • /
    • pp.468-479
    • /
    • 2022
  • 수중에서 능동소나를 이용하여 표적을 탐지하기 위하여, 송신음이 표적에 반사된 반향을 수신함으로써 표적의 위치를 감지한다. 이때 산란체로부터의 잔향이 발생하며, 이는 표적 반향의 탐지를 방해하게 된다. 효과적인 표적 탐지를 위해 자기회귀 모델기반의 백색화 기법이나 주성분역산 등의 잔향 제거 기법이 연구된 바 있으며, 최근에는 비음수 행렬 분해 기반의 기법이 고안되었다. 비음수 행렬 분해 기반의 잔향 제거 기법은 기존의 기법에 비해 향상된 성능을 보여주지만, 송수신기의 위치 및 거리에 의한 감쇠 등이 고려되지 않았다. 본 논문에서는, 양상태 소나에서 지속파 송신 파형을 사용하는 경우에 대하여 수신기의 방향성과 그에 관련된 도플러, 그리고 거리에 대한 감쇠 등의 전처리를 통해 성능을 개선하였다. 본 연구에서 고안된 시스템의 성능을 확인하기 위하여 잔향 모델을 이용한 시뮬레이션을 수행하였다, 시뮬레이션 결과 1 %의 낮은 오탐지율에서 기존의 비음수 행렬 분해 기법 대비 10 % ~ 40 %의 탐지율 성능 향상이 있음을 확인하였다.

베타-발산 함수를 활용한 비음수 행렬 분해 기반의 능동 소나 잔향 제거 기법에 대한 연구 (A study on the active sonar reverberation suppression method based on non-negative matrix factorization with beta-divergence function)

  • 이석진;김근환
    • 한국음향학회지
    • /
    • 제43권4호
    • /
    • pp.369-382
    • /
    • 2024
  • 능동 소나 시스템에서 잔향을 제거하기 위하여 최근 비음수 행렬 분해 기법을 활용한 잔향 제거 알고리즘이 고안된 바 있다. 비음수 행렬 분해 알고리즘을 설계하기 위해서는 분해된 기저 행렬의 곱이 원본 신호와 같도록 유도하는 추정 비용 함수가 필요한데, 기존의 연구에서는 이에 대한 고찰이 없이 쿨백-라이블러 발산 함수를 활용하였다. 본 논문에서는 쿨백-라이블러 발산 함수의 선택이 좋은 선택이었는지, 혹은 성능을 개선할 수 있는 다른 추정 비용 함수가 있는지 연구하고자 하였다. 이를 위하여, 먼저 쿨백-라이블러 함수를 포함하여 일반화된 베타-발산 함수를 활용하여 수정된 잔향 제거 알고리즘을 제안하였다. 그리고 수정된 잔향 제거 알고리즘에 대해 합성된 잔향 신호를 활용한 몬테-카를로 시뮬레이션을 수행하였다. 그 결과 높은 신호대잔향비 환경에서는 쿨백-라이블러 발산 함수(β= 1)가 좋은 성능을 보이지만, 낮은 신호대잔향비 환경에서는 쿨백-라이블러 발산 함수와 유클리드 거리의 중간 특성을 가지는 함수(β= 1.25)가 더 좋은 성능을 보이는 것을 확인하였다.

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

CONVERGENCE ANALYSIS OF THE EAPG ALGORITHM FOR NON-NEGATIVE MATRIX FACTORIZATION

  • Yang, Chenxue;Ye, Mao
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.365-380
    • /
    • 2012
  • Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve the NMF problem, but it fails to approach a stationary point and has inner iteration and zero divisor. So the elementwisely alternating projected gradient (eAPG) algorithm was proposed to overcome the defects. In this paper, we use the fact that the equilibrium point is stable to prove the convergence of the eAPG algorithm. By using a classic model, the equilibrium point is obtained and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the eAPG algorithm are obtained, which can accelerate the convergence. In addition, the conditions, which satisfy that the non-zero equilibrium point exists and is stable, can cause that the algorithm converges to different values. Both of them are confirmed in the experiments. And we give the mathematical proof that the eAPG algorithm can reach the appointed precision at the least iterations compared to the MU algorithm. Thus, we theoretically illustrate the advantages of the eAPG algorithm.

비음수 행렬 인수분해 기반의 음성검출 알고리즘 (Voice Activity Detection Based on Non-negative Matrix Factorization)

  • 강상익;장준혁
    • 한국통신학회논문지
    • /
    • 제35권8C호
    • /
    • pp.661-666
    • /
    • 2010
  • 본 논문에서는 비음수 행렬 인수분해 기법을 기반으로 한 새로운 음성 검출 (Voice Activity Detection, VAD) 알고리즘을 제안한다. 먼저, 기존의 통계모델기반의 음성검출기를 분석하고, 이를 기반으로 비음수 행렬 인수분해를 통해 도출한 입력 기초 벡터와 잡음 기초 벡터 차이로 음성의 유무를 판단한다. 이때 최적의 문턱값을 찾기 위해 통계모델 기반의 음성검출기에 의해 추정된 잡음 구간에서 NMF 결과의 분포에 따라 최적화된 문턱값을 비음수 행렬기반의 음성 검출 알고리즘에 적용하는 방법을 제안한다. 실험 결과 기존의 통계적 모델 기반의 음성검출기에 비해 6.75%의 성능향상을 가져왔다.

비음수 행렬 분해와 학습 벡터 양자화를 이용한 얼굴 인식 (Face Recognition using Non-negative Matrix Factorization and Learning Vector Quantization)

  • 진동한;강현철
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.55-62
    • /
    • 2017
  • 비음수 행렬 분해 기법(non-negative matrix factorization)은 대표적인 부분 영역 기반 표현 기법의 하나로 영상의 부분적인 특징을 나타내는 기저 벡터의 선형 조합으로 영상을 표현하는 기법이다. 본 논문에서는 여러 가지 비음수 행렬 분해 기법을 이용하여 얼굴 영상을 표현하고, 추출된 특징을 기반으로 학습 벡터 양자화를 이용하여 얼굴 인식을 수행하였다. 추출된 각 기법의 기저 벡터를 비교하여 각 기법의 특징을 분석하였다. 또한 NMF 기법들의 인식율 검증을 통해 비음수 행렬 기법의 얼굴 인식에 대한 활용 가능성을 확인하였다.

Topographic non-negative matrix factorization에 기반한 텍스트 문서로부터의 토픽 가시화 (Topographic Non-negative Matrix Factorization for Topic Visualization from Text Documents)

  • 장정호;엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.324-329
    • /
    • 2006
  • Non-negative matrix factorization(NMF) 기법은 음이 아닌 값으로 구성된 데이터를 두 종류의 양의 행렬의 곱의 형식으로 분할하는 데이터 분석기법으로서, 텍스트마이닝, 바이오인포매틱스, 멀티미디어 데이터 분석 등에 활용되었다. 본 연구에서는 기본 NMF 기법에 기반하여 텍스트 문서로부터 토픽을 추출하고 동시에 이를 가시적으로 도시하기 위한 Topographic NMF (TNMF) 기법을 제안한다. TNMF에 의한 토픽 가시화는 데이터를 전체적인 관점에서 보다 직관적으로 파악하는데 도움이 될 수 있다. TNMF는 생성모델 관점에서 볼 때, 2개의 은닉층을 갖는 계층적 모델로 표현할 수 있으며, 상위 은닉층에서 하위 은닉층으로의 연결은 토픽공간상에서 토픽간의 전이확률 또는 이웃함수를 정의한다. TNMF에서의 학습은 전이확률값의 연속적 스케줄링 과정 속에서 반복적 파리미터 갱신 과정을 통해 학습이 이루어지는데, 파라미터 갱신은 기본 NMF 기반 학습 과정으로부터 유사한 형태로 유도될 수 있음을 보인다. 추가적으로 Probabilistic LSA에 기초한 토픽 가시화 기법 및 희소(sparse)한 해(解) 도출을 목적으로 한 non-smooth NMF 기법과의 연관성을 분석, 제시한다. NIPS 학회 논문 데이터에 대한 실험을 통해 제안된 방법론이 문서 내에 내재된 토픽들을 효과적으로 가시화 할 수 있음을 제시한다.

  • PDF

중첩 비음수 행렬 분해 기법에 기반한 지속파 능동 소나의 잔향 신호 제거 기법 (Reverberation suppression algorithm for continuous-wave active sonar system based on overlapping nonnegative matrix factorization)

  • 이석진;임준석;정명준
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.273-278
    • /
    • 2017
  • 본 논문에서는 지속파 능동 소나의 수신된 신호에서 잔향 신호를 제거하는 후처리 알고리즘을 도출하고자하며, 제안하는 알고리즘은 작은 도플러효과가 존재하여 목표물로부터 반사된 핑 신호가 잔향신호와 잘 구분이 되지 않는 경우를 목표로 하여 고안되었다. 본 알고리즘은 중첩 비음수 행렬 분해 기법에 기반하고 있으며, 방사될 핑 신호의 주파수 특성을 분석한 후, 수신된 신호의 시간-주파수 영역 특성을 이용하여 잔향 신호를 제거하고 핑 신호를 복원한다. 알고리즘의 효과를 분석하기 위하여 시뮬레이션을 수행하였으며, 시뮬레이션 결과 다양한 진향 신호 에너지 환경에서 6 dB 가량의 신호대잔향비 성능 향상을 보임을 확인할 수 있었다.