본 논문은 순환 행렬 분해에 의한 DCT와 DFT의 고속 계산을 위한 하이브리드 아키텍쳐 알고리듬을 제안한다. DCT-II와 DFT 변환 행렬의 순환 분해는 알고리듬적으로 구현하기가 유사한 구조를 제공하며 이것은 단순히 스위칭 모드의 제어에 의해 공통 아키텍쳐를 사용할 수 있게 한다. 두 변환간의 연계는 행렬 순환 공식에 기초하여 유도되었다. DCT/DFT 행렬 분해를 위한 하이브리드 구조 설계를 가능하도록 생성 행렬, 삼각함수 항등식 과 관계식을 사용하여 유도되었다. DCT/DFT 하이브리드 아키텍쳐를 수용하는 쿨리-투키 유형의 고속처리 아키텍쳐에 대한 데이터 흐름도를 작성하였다. 이 데이터 흐름도로부터 적절한 크기의 N에 대해 제안한 알고리듬의 계산 복잡도는 기존의 고속 DCT 알고리듬과 비교할만하다. 다른 직교변환 계산에 FFT 구조의 다중 모드 사용 확장을 위해 좀더 확장된 연구가 필요하다.
본 논문에서는 잔향이 존재하는 환경에서 낮은 도플러 주파수를 가지는 지속파 능동 소나의 반사음이 수신될 때, 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 이를 탐지하는 기법에 대한 연구를 수행하였다. 지속파 능동 소나에서 수신기가 이동하는 경우 도플러 효과로 인하여 잔향 주파수 대역이 넓어지며, 이 경우 낮은 도플러 주파수를 가지는 표적 반사음은 잔향에 의해 방해를 받는다. 본 논문에서 고안한 알고리즘은 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 수신음의 다채널 스펙트로그램을 주파수 기저, 시간 기저, 빔형성기 이득으로 분석한 후, 적절한 기저를 선택하여 반사음의 주파수, 시간, 그리고 방위를 추정한다. 해당 알고리즘의 동작을 분석하기 위하여 다양한 신호대잔향음 환경에서의 시뮬레이션을 수행하였으며, 분석 결과 고안한 알고리즘이 주파수, 시간, 그리고 방위를 추정할 수 있으나 낮은 신호대잔향비 환경에서 성능이 저하됨을 확인할 수 있었다. 시뮬레이션 결과에 따르면, 향후 기저 선택 알고리즘을 수정함으로써 성능을 개선할 수 있을 것이라 예상된다.
수중에서 능동소나를 이용하여 표적을 탐지하기 위하여, 송신음이 표적에 반사된 반향을 수신함으로써 표적의 위치를 감지한다. 이때 산란체로부터의 잔향이 발생하며, 이는 표적 반향의 탐지를 방해하게 된다. 효과적인 표적 탐지를 위해 자기회귀 모델기반의 백색화 기법이나 주성분역산 등의 잔향 제거 기법이 연구된 바 있으며, 최근에는 비음수 행렬 분해 기반의 기법이 고안되었다. 비음수 행렬 분해 기반의 잔향 제거 기법은 기존의 기법에 비해 향상된 성능을 보여주지만, 송수신기의 위치 및 거리에 의한 감쇠 등이 고려되지 않았다. 본 논문에서는, 양상태 소나에서 지속파 송신 파형을 사용하는 경우에 대하여 수신기의 방향성과 그에 관련된 도플러, 그리고 거리에 대한 감쇠 등의 전처리를 통해 성능을 개선하였다. 본 연구에서 고안된 시스템의 성능을 확인하기 위하여 잔향 모델을 이용한 시뮬레이션을 수행하였다, 시뮬레이션 결과 1 %의 낮은 오탐지율에서 기존의 비음수 행렬 분해 기법 대비 10 % ~ 40 %의 탐지율 성능 향상이 있음을 확인하였다.
능동 소나 시스템에서 잔향을 제거하기 위하여 최근 비음수 행렬 분해 기법을 활용한 잔향 제거 알고리즘이 고안된 바 있다. 비음수 행렬 분해 알고리즘을 설계하기 위해서는 분해된 기저 행렬의 곱이 원본 신호와 같도록 유도하는 추정 비용 함수가 필요한데, 기존의 연구에서는 이에 대한 고찰이 없이 쿨백-라이블러 발산 함수를 활용하였다. 본 논문에서는 쿨백-라이블러 발산 함수의 선택이 좋은 선택이었는지, 혹은 성능을 개선할 수 있는 다른 추정 비용 함수가 있는지 연구하고자 하였다. 이를 위하여, 먼저 쿨백-라이블러 함수를 포함하여 일반화된 베타-발산 함수를 활용하여 수정된 잔향 제거 알고리즘을 제안하였다. 그리고 수정된 잔향 제거 알고리즘에 대해 합성된 잔향 신호를 활용한 몬테-카를로 시뮬레이션을 수행하였다. 그 결과 높은 신호대잔향비 환경에서는 쿨백-라이블러 발산 함수(β= 1)가 좋은 성능을 보이지만, 낮은 신호대잔향비 환경에서는 쿨백-라이블러 발산 함수와 유클리드 거리의 중간 특성을 가지는 함수(β= 1.25)가 더 좋은 성능을 보이는 것을 확인하였다.
International journal of advanced smart convergence
/
제8권2호
/
pp.39-46
/
2019
Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.
Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve the NMF problem, but it fails to approach a stationary point and has inner iteration and zero divisor. So the elementwisely alternating projected gradient (eAPG) algorithm was proposed to overcome the defects. In this paper, we use the fact that the equilibrium point is stable to prove the convergence of the eAPG algorithm. By using a classic model, the equilibrium point is obtained and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the eAPG algorithm are obtained, which can accelerate the convergence. In addition, the conditions, which satisfy that the non-zero equilibrium point exists and is stable, can cause that the algorithm converges to different values. Both of them are confirmed in the experiments. And we give the mathematical proof that the eAPG algorithm can reach the appointed precision at the least iterations compared to the MU algorithm. Thus, we theoretically illustrate the advantages of the eAPG algorithm.
본 논문에서는 비음수 행렬 인수분해 기법을 기반으로 한 새로운 음성 검출 (Voice Activity Detection, VAD) 알고리즘을 제안한다. 먼저, 기존의 통계모델기반의 음성검출기를 분석하고, 이를 기반으로 비음수 행렬 인수분해를 통해 도출한 입력 기초 벡터와 잡음 기초 벡터 차이로 음성의 유무를 판단한다. 이때 최적의 문턱값을 찾기 위해 통계모델 기반의 음성검출기에 의해 추정된 잡음 구간에서 NMF 결과의 분포에 따라 최적화된 문턱값을 비음수 행렬기반의 음성 검출 알고리즘에 적용하는 방법을 제안한다. 실험 결과 기존의 통계적 모델 기반의 음성검출기에 비해 6.75%의 성능향상을 가져왔다.
비음수 행렬 분해 기법(non-negative matrix factorization)은 대표적인 부분 영역 기반 표현 기법의 하나로 영상의 부분적인 특징을 나타내는 기저 벡터의 선형 조합으로 영상을 표현하는 기법이다. 본 논문에서는 여러 가지 비음수 행렬 분해 기법을 이용하여 얼굴 영상을 표현하고, 추출된 특징을 기반으로 학습 벡터 양자화를 이용하여 얼굴 인식을 수행하였다. 추출된 각 기법의 기저 벡터를 비교하여 각 기법의 특징을 분석하였다. 또한 NMF 기법들의 인식율 검증을 통해 비음수 행렬 기법의 얼굴 인식에 대한 활용 가능성을 확인하였다.
Non-negative matrix factorization(NMF) 기법은 음이 아닌 값으로 구성된 데이터를 두 종류의 양의 행렬의 곱의 형식으로 분할하는 데이터 분석기법으로서, 텍스트마이닝, 바이오인포매틱스, 멀티미디어 데이터 분석 등에 활용되었다. 본 연구에서는 기본 NMF 기법에 기반하여 텍스트 문서로부터 토픽을 추출하고 동시에 이를 가시적으로 도시하기 위한 Topographic NMF (TNMF) 기법을 제안한다. TNMF에 의한 토픽 가시화는 데이터를 전체적인 관점에서 보다 직관적으로 파악하는데 도움이 될 수 있다. TNMF는 생성모델 관점에서 볼 때, 2개의 은닉층을 갖는 계층적 모델로 표현할 수 있으며, 상위 은닉층에서 하위 은닉층으로의 연결은 토픽공간상에서 토픽간의 전이확률 또는 이웃함수를 정의한다. TNMF에서의 학습은 전이확률값의 연속적 스케줄링 과정 속에서 반복적 파리미터 갱신 과정을 통해 학습이 이루어지는데, 파라미터 갱신은 기본 NMF 기반 학습 과정으로부터 유사한 형태로 유도될 수 있음을 보인다. 추가적으로 Probabilistic LSA에 기초한 토픽 가시화 기법 및 희소(sparse)한 해(解) 도출을 목적으로 한 non-smooth NMF 기법과의 연관성을 분석, 제시한다. NIPS 학회 논문 데이터에 대한 실험을 통해 제안된 방법론이 문서 내에 내재된 토픽들을 효과적으로 가시화 할 수 있음을 제시한다.
본 논문에서는 지속파 능동 소나의 수신된 신호에서 잔향 신호를 제거하는 후처리 알고리즘을 도출하고자하며, 제안하는 알고리즘은 작은 도플러효과가 존재하여 목표물로부터 반사된 핑 신호가 잔향신호와 잘 구분이 되지 않는 경우를 목표로 하여 고안되었다. 본 알고리즘은 중첩 비음수 행렬 분해 기법에 기반하고 있으며, 방사될 핑 신호의 주파수 특성을 분석한 후, 수신된 신호의 시간-주파수 영역 특성을 이용하여 잔향 신호를 제거하고 핑 신호를 복원한다. 알고리즘의 효과를 분석하기 위하여 시뮬레이션을 수행하였으며, 시뮬레이션 결과 다양한 진향 신호 에너지 환경에서 6 dB 가량의 신호대잔향비 성능 향상을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.