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Abstract

This paper proposes a hybrid architecture algorithm for fast computation of DCT and DFT via recursive
factorization. Recursive factorization of DCT-II and DFT transform matrix leads to a similar architectural
structure so that common architectural base may be used by simply adding a switching device. Linking between
two transforms was derived based on matrix recursion formula. Hybrid acrchitectural design for DCT and DFT
matrix decomposition were derived using the generation matrix and the trigonometric identities and relations. Data
flow diagram for high-speed architecture of Cooley-Tukey type was drawn to accommodate DCT/DFT hybrid
architecture. From this data flow diagram computational complexity is comparable to that of the fast DCT
algorithms for moderate size of N. Further investigation is needed for multi-mode operation use of FFT
architecture in other orthogonal transform computation.
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I. Introduction transform in its performance, which is very close to
that of KLT(Karhunen-Loeve Transform) for picture

ding[1]. Al t FFT (Fast Fourier T 3
DCT (Discrete Cosine Transform) and DFT (Discrete coding(1} SO mos (Fast Fourier Transform)

.. . .. algorithms based on Cooly-Tukey data flow diagram
Fourier Transform) have been found in many applicati

. L. . . were implemented and applied to signal processing and
ons for signal classification, representation and image

. . ) communication fields such as OFDM transmission and
coding. DCT was found as the best suboptimal

orthogonal code designs. A link between these transfo

*Dept. of Information and Communication Engineering, rms was attempted in this paper by exploiting the
Hannam University
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characteristics of sparse matrix decomposition of the

/é])\} ¢tE : 2007. 4. 18 unitary matrix. Many researchers investigated the
ol =EL 20060 % dddistm ez AY A o links among unitary transforms using QR-like
] AU

factorization called Jacket-like sparse matrix deco
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mposition[2,3,4,7,10].

Lee [3] has proposed the Reverse Jacket Tran
sform(RJT) based on a generalization of the W
HT(Walsh Hadamard Transform). Recently, Park et
al.[4] also discovered an interesting relationship in
Jacket-like sparse matrix representation of DFT. In
this paper, we propose a hybrid architecture

algorithm, which links DCT/DFT by using recu
rsive decomposition of a Jacket-like sparse matrix.

II. Recursive Factorization

2.1 Jacket Matrix Concept and Properties

Any normal matrix (for example, real symetric,
hermitian, skew-hermitian, unitary matrix) could be
diagonalized by unitary transform. As a general case ,
any matrix with linearly independent columns can be
factored into AE=QR. Such factorization can be viewed
as a Jacket matrix representation meaning a jacket
with inside and outside. Normally, matrix R is a
sparse matrix and matrix Q is a unitary matrix.

As a special case of QR decomposition, the matrix Q
can be fixed to a trigonometric transform matrix by a
constraint.

Being viewed with this concept, a Jacket(})) matrix is
a generalized weighted Hadamard transform matrix [5].

Here [Sl. is a sparse matrix of [JIm.

Wl = [, (8], =25k {1,23,4,..) (1)

Jacket matrix [/lm has an element/block inverse
property[2). The inverse of [JIn is also a Jacket
matrix..

Most trigonometric transform matrix (DFT, DCT,
DST, WHT, Haar Transform, Hartley Transform, etc)
can be represented as a Jacket-like sparse matrix. For
example, the DFT matrix for N=8 case can be
decomposed as follows[4]:

) 4L 0 0
[Fly = [H,| 0 2(G/)" 0 (A @
o o (GH)

1 - | e
= Z[H]g[s]s [1)]3 = Z[ﬂg [P}s

where [FJs and [H]Js are a 8-point DFT and Walsh
Hadamard Transform matrix, respectively. Also
G, =F,[Dl, and G, =1F,[D], , where in general

(D] = diag( WORN PN g Rlen, |

2.2 Recursive Factorization of DCT

As mentioned before DCT-II belongs to a family of a
Jacket-like sparse matrix, meaning that DCT-II can
be factored out by the unitary matrix and a sparse
matrix. Discrete Cosine Transform (DCT) is widely
used in image processing, and orthogonal transform. A

typical DCT matrix is DCT-II [1], which is defined as
DCT-II:

5 m(n-i-—é—)ﬂ'
ey . =4/ k cos——————— mn=0,1,.,N-1, (3)
‘Nimn m N

1, j=12,..N—1

1
T =0,N
V2!
To generalize a recursive factorization of size N
DCT-II , we start with N=24, and 8:

where kj ={

11 11

A =| V2 VE|=| V2 V2 @
cl A =
! V2 V2
__1_[1 1]__1 [G Cl]
\/—2' 1-1 \/5 B, —B

where C, =1/ \/5 can be seen as a special element

inverse matrix of order 1, its inverse is V2, and
Ci=cos(in/l) is the
computations.
Furthermore, 4-by-4 DCT - II matrix can be
rewritten by using identities

G =l == G}=- G s

cosine unit for DCT

1 1 1 1

10001} v2 v2 V2 V2
prlicl=[00g0|| & G & G
0001/ & Cg; Osf G
08 03 C'S CS
RSSO S W B U O U N O
VI VI VE VE| | VEVE VR VR
¢ ¢ ¢ gl-la-g-aa )
¢ ¢ qdqlle ¢-¢-q
G G GG G -G G -¢

where [Prls; is a permutation matrix for N=4 for [Prly
which has the bit reversal order(BRO) form of [I]y :
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[100...00...0]
000..10..0
010..00..0
- _lo00..01..0
[Prly =, Prlyv=1 0071 go ol V=4 6)
000..00...0
1000..000 1]
with
pri; =1, ifi=25,0<j< N/2—1
pri;=Lifi=(2j+1)modN, N/2< j < N—1 Let
pri;i =0, others

i,J
where [Pr]y=[pr; |y
Let us define a column permutation matrix ,[Pc/w,
which has the form as

Iys 0 0 0
OIN/4 0 0

Pel, =1, 2]y = JN=>4

(P, = 4y, [Pely 00 0 Iy (7
0 0 Ly, 0

Thus we have for N=4

1000]| V2 V2 v2 2 |[1000
g |[o1o00

- G 686 0001
0001){ G & G & |looto
¢ dqdaqa
S D S
2 V2 V2 V2
; d, 1d id, o1[L o
= C: = 2 2 | 2 3
éff %:e G fi; [[512 —[B]J 0 {312”() —12] @

G 4§ G G

[d, [d,

It can be shown that (B, -8 satisfies properties
2 2

of the Jacket matrix. Similarly, for N=8, we obtain the
followings:

Priy (APl =[Gy = [C; —611194]

_Ja o 144}
0 Byl —4

In general the permuted DCT-II matrix can be

9

decomposed recursively as follows:

@ =lrlylchir, = [ P | 10

-2
0 _B/v/z Ly —Iyp

In (10) top left block matrix [Clyz of [C]v has a
recursive factorization, but bottom right block matrix
[Binsz of [Cly does not.

Many authors [8,9,10] proposed a further decomposition

algorithm to derive a fast implementation of [Blnsz
computation, which normally requires (N/2 x N/2 )
real multiplication.

The proposed algorithm partitions [BJyz into a
recursive form using both the generation matrix and

the trigonometric identities and relations to be
explained below:
Generation matrix :
[B]N/z - [( f o )m,"]N/z, (11)
where{ (m 1) =2m—1,

flmn+1) = f(m,n) + f(m,1)*2

In case of NxN DCT-I matrix, {Cly can be
represented as in (12).

L A 1
[l = fo”v‘@“ Cin'” G "™ G
Czjl\;;qso Cf]’ifdsl Cf:[z¢1v— 02k24>,v,
2’wv %y CZI"N—2¢1 2"N—2¢N 2 CZLN—2¢

(12)
where k; =i+1,i€{0,1,2,...}
According to (11), a NXN matrix [Bly from [Clon
can be derived to (13) by using the trigonometric
identities and relations given by

(2k; +1), kb, 2&, na,
Gy =20l
= czfif "'+20"“““’“63N,
me0,1,2,..

Now we have

b &, B,
Ciy Cn 7 Cw
Cﬁmlm q(?vkoﬂ)@l q(fvxhﬂ)%,,
[B]N: Q;(?\flﬂ)% CZ(}Q:,%—])Q’, q(;z\f,ﬂ)qs,“
Cﬁfﬂ'”“ o C(zl.,v PRV T Cﬁf\f’v 2'+1)¢N L
= [K]N[dN[D]N (13)
where
V2 0 0.
\/2_ 2 Q.-
,and
[KTN \/5 2 2_”



109 / &3 338 E3d 9 DCT/DFT stelrne= 73 dug s

e

Cv 0 ..g
2, :
(Dly=| 0 G . (14)
0-- 0ch

The proof for this is shown in appendix.

By using the results obtained from the previous
equations (11)7(14) , we have a new form for DCT -
II matrix as :

Ay =Pt [AylP)y = [PriylAylPcly  (15)

where

[Ay=[PriyCPely
)
Iype =Lyl 0 By
_ [Chpa 0] [IN/2 Iy ]
[ 0 Bup| v — I

[Civya 0 HlN/z Iy ]
| 0 Ky CunpaDupa| | Ivye — Iy

[ Iy, O ]FCN/'z 0 ]

1 0 Kupo | O Chpa

[Zy/2 O } Ly Iy ]
0 Dyl vz — Ly

(16)

It can be easily shown that center diagonal matrix can
now be factorized in a recursive manner as

2
0 Cup
Iya 0 0 0 Cvys 0 0 0
_oKNMOO.oCNMOO.
0 0 Lysa O 0 0 Cys O
0 0 o KN/4 0 0 0 CN/4
Iys 0 0 0 Iys Lys 0 0
0 Dyy 0 0 | Nlyy —Iys 0 0 an
0 0 Iya O 0 0 vl
0 0 0 Dy, 0 0 Iy Iy,

2.3 Recursive Factorization of DFT

In a similar way, for N=4, we can factorized a DFT
_ . 2amn
_ [WTIL1L4] _ [6 A

matrix [Fli , where [Fl, ], into a

recursive form:

1000] [ W W W W
= _|ooio|{ W W' W w?
[1:]4_[Pr]4[F]4_ 0100 W0W2W4W6
0001 | o o o o
1000} 1 1 1 1
_lootoj|t —j—-1
0100ff1 -1 1 —1
10001}[1 45 —1 —j
1 1 1 1
|1 -i-1 || B
= |1 1~1[E2 o as)
1 j-1—j
In general, we have
[I?]NZ[PI‘]N[F']N
— T
:([IN/2 ]N/2] F/v/2 0 ])
L2 = vl | 0 By
— [F N/2 0 H[N/2 ]N/2]
0 Eypl vz — Iy
_ | Fwe 0 Iyrz -’N/z]
0 Pry, 2FN/2 Wil Unrz — Iare
[IN/Z 0 F/V/2
0 PrN/z 0 FN/2
L2 O HIN/z ]N/z]
= 19
[0 Warad e = e (19
where [Fl, =[I~V]2 And the submatrix En~ could be

written by [Ely=[Prly[F,[Wy , where

W0 0
(W= g w <~ o |’ and W is the n-th root of
0 el

unity for 2N point DFT matrix.

Finally, based on the recursive form we have

[ NT [Pr}fv] [i]N ~
_ Ly, 0O Fap 0
= [Pr]N[ 0 PrN/Q] [O FN/2
IN/2 ] [[N/2 ]N/2}
= 20
[ 0 Wil Iz —Ivp (20)

2.2.3 Link between Two Transforms

From eqgns (15) and (20) we have
[y =P [AWPR = [Pr]y[OulP 1)

where
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afral [ 2
([Ax [0 Ky 0 Cys (22)
[IN/z 0 } . [IN/2 IN/Z]
0 Dyp Lye  — Iy
And [HN"—‘[PI‘]N[}}]N[]]N (23)
where
= _ |2 O ] Ez\;z 0
[IN/2 0 ] . [IN/Q IN/2]
0 WN/2 IN/2 "IN/z

Main differences lie in center matrices. However the
architectural structure of the center matrices resembles
each other. This feature lets us utilize common
butterfly data flow diagram based on Cooley-Tukey
that was used in the development of FFT. We will
show that in the next section.

ITI. Hybrid Architecture Design

3.1 Cooley-Tukey Type Data Flow Diagram of
DCT

Using (22) butterfly data flow diagram for DCT-II
transform is drawn from left to right to perform
X=[Clx x.

J— r[c‘-}z‘ -
- X~ 7 -
i & TN L
] FX e -

...... c]

: X N/ cl :
__ Ky ... XX v i
_ {K;| X c83 C)l‘[ll—l
g el P
4 4 X l\/ c B
P R (& cs

A fonf— o250 e

- i - X -~ c; :
4 U LSV I adXX...

] O CCTANGAANE

""J [D]z ID]NM [D]mz __J

Fig. 1. Butterfly data flow diagram of the proposed
DCT ~ II matrix with order N

3.2 Cooley-Tukey Type Data Flow Diagram of
DFT

Similarly, using (23) butterfly data flow diagram for
DFT transform is drawn from left to right to perform
X=[FIn x.

- 2

- pren N/ —
. =)o SN/ A N/
_ Pr W XX/ N\\\__//7
___ Pryvia| aee

X: Pr Pe
40 R,
b LIPwn
4 H 4 /KN
| 1] Prya | wue I\
1 [WI L4 ‘-[WTJ/;

Forward direction
Fig.2. Butterfly data flow diagram of the proposed
DFT matrix with order N

It is clear that the form of (22) is the same as that of
(24), where we only need change [KJm to [Prlm
and [Dln to [W]n with M €{2,4,8,..., N/2}
Hence a simple generalized block diagram for
DCT/DFT hybrid architecture algorithm can be drawn
as Fig.3. In this figure, we can combine DCT and
DFT in one processing architecture, and use the
switching box to control mode of operation. It will be
useful in developing a single chip to perform DCT
and/or DFT processing task.

Hybrid Architecture for DCT/DFT Processor

[1,,,, Ty :|
Twz =l
DFT ) r 3
x Recursion X
— For Cyyy i
in out
DCT © -
SV device ) 1
g
Kz | | Prwe
DCT  DFT

Fig.3. A simple generalized block diagram for proposed
DCT/DFT hybrid architecture algorithm

Computational complexity[10] of the proposed recursive
factorization scheme is comparable to FFT, Chen’'s
DCT[8] and Wang’'s DCT algorithms [S] as shown
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below:

FFT : Complex additions(MVog"? )
DCT-I (Chen) : Real additions
3N/2(1og™?) +2, N> 4
DCT-II(Wang) : Real additions
3N/2(log™?—1) +2, N> 4
DCT-RF(proposed) : Real additions
NlogN/2+N/2—1

IV. Conclusions

In this paper, we derive the recursive formulas for
DCT - T and DFT matrices. The results have been
shown that the DCT - 1I and DFT can be unified by
using the same architectural base with minor change.
Hence a unified fast processing block to implement
DCT/DFT hybrid architecture algorithm
designed by adding switching device to control dual
function of DCT and DFT processing depending on
Also computational complexity is

can be

mode of operation.
comparable to the fast DCT algorithms for moderate
size of N. Also hybrid architecture has several
advantages in making a single chip that operates in
multifunction mode.

Further investigation is needed for multi-mode ope
ration use of FFT architecture in other trigo nometric
transform computation.

Appendix

Proof for [Bly= Kl CNDly

In case of NXN DCT - I matrix, [C']N, it can be
represented by using the form as

[ 1 1 1 1
V2 /2 V2 V2
2k, kody Ko - o Koy - 1
QN 4N CfN CfN
_ 2k, 2k, P, KBy o 2Py
[Cly=| Cin™ Cin G Cin
ky By 2k, Py 2k, Dy 2k, Py .y
Gn" Gy Gy Ciy
ky 2By Ky 0By 2k - Py -y 2kzvj WPy
levilaor v aalomatl]

(A-1)
,where k;, =i+1,i€0,1,2,..., .

According to generation matrix (11), a NxN matrix

[Blv from [Clvcan be simply presented by

ki D1
Cin Cow v G
Cﬁvkbﬂ)% Cﬁvkbﬂ)@ q(/?VAaqu
[B]N = C:;(fxfl +1)d, q(%;, +1)8, Cgf‘ +1)By 4 (A-2)
Cji’;’N—‘2+1)¢0 Cii’:N~2+l)¢l Cﬁi’,w‘lv—z.‘*’l)q’lv—x

And based on trigonometric relations ,we have the

formula
(2K +1),, I (2, —1)8,
G =200 Cln— Oy (A-3)
. (2%, —1)&,, 2k, B
==Cy +2C,y " Cypn
;2where m<0,1,2,...
Thus we can calculate that
[B]Nz [K]N[dN[D]N
v2 0 000
—-v2 2 00 O
_| v2 -2 2 0 of,
-2 2 -2 2.
V2 —2 2 —22
1 1 1 1
V2o V2 V22
2By o b, IS ) o S
Ciwv Civ Cv ' "Cy "
kB, by By W@y s 2By,
Cf/v qzzv QUV v C4N v *
kD kP kP o k Dy
G Cix G O
qu/]:'llv-ﬂo Cfl"\"lzv—gqﬁn Cf/’;/v-zq’zv-z Cfl"vzv 2Py 1—
—
Cyv 0 ..
451
0 Gy
: . 0
0-- 0 CfNN"
— 14200 -1+20"" — 14203

- 1—2Cf,f,°¢°+2Cf,t,‘¢"1~26fx"¢‘+26f,k\',‘¢‘--- 1_26‘.12/‘\»‘/04’/\!—1_’_2(2‘2[’;1‘1’#2

v o
0l
: L0
0. 0 ChE
o Cly an’
—C 20t STl e NN A A S el
(o Tl RS Lol b ol R Tentl e

(A-4)
Since ky;=1 , we get
' kP AP 2ky— 1)D,, kP P A2+ 1)D,
- CfN+2CfNO Cf/v = Cj/v +2CfN Cf/v_ ijvo
(A-5)
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and
' i P P kg— 1), kP AP 2 '
=20 Gl =— (= Gy ™ 42000 Cle) == Clyet *

(A-6)
In case of k;,=i+1 , we have
(2k;_,+ 1)@, =(2(k;— 1) +1)®,, = (2k;—1)&,,, then we
get
Clr— 2% P Ol y 2O O = — O+ Wy 9 0% o
= — Ot 2CHInCl = OO
(A-T)
Taking the (A-5)-(A-7) to (A-4), we can rewrite that

ot et -y
~ O +20,7°Cly — O 20y, - ract ol
Ciy =20 Cly +2C,™"Cly Cly =20 Cly +2007 €y -
¢U 1 ¢N 1
Civ C::f)/v : Ciw
C,(zL;,+1)¢u C(2lq,+1)d§, C(%’H)qs”"
4N AN AN =[B] N
C,(2kl+1)45u C(2k,+l)di,”_ C(2k1+1)¢,v .
aN

4N 4N

Proof for [Bly =[KIy[CIy[Dly is completed.
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