DOI QR코드

DOI QR Code

A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization

빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구

  • Lee, Seokjin (School of Electronics Engineering, Kyungpook National University)
  • 이석진 (경북대학교 전자공학부)
  • Received : 2018.09.10
  • Accepted : 2018.11.21
  • Published : 2018.11.30

Abstract

In this paper, a target detection method based on beamspace-domain multichannel nonnegative matrix factorization is studied when an echo of continuous-wave ping is received from a low-Doppler target in reverberant environment. If the receiver of the continuous-wave active sonar moves, the frequency range of the reverberation is broadened due to the Doppler effect, so the low-Doppler target echo is interfered by the reverberation in this case. The developed algorithm analyzes the multichannel spectrogram of the received signal into frequency bases, time bases, and beamformer gains using the beamspace-domain multichannel nonnnegative matrix factorization, then the algorithm estimates the frequency, time, and bearing of target echo by choosing a proper basis. To analyze the performance of the developed algorithm, simulations were performed in various signal-to-reverberation conditions. The results show that the proposed algorithm can estimate the frequency, time, and bearing, but the performance was degraded in the low signal-to-reverberation condition. It is expected that modifying the selection algorithm of the target echo basis can enhance the performance according to the simulation results.

본 논문에서는 잔향이 존재하는 환경에서 낮은 도플러 주파수를 가지는 지속파 능동 소나의 반사음이 수신될 때, 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 이를 탐지하는 기법에 대한 연구를 수행하였다. 지속파 능동 소나에서 수신기가 이동하는 경우 도플러 효과로 인하여 잔향 주파수 대역이 넓어지며, 이 경우 낮은 도플러 주파수를 가지는 표적 반사음은 잔향에 의해 방해를 받는다. 본 논문에서 고안한 알고리즘은 빔공간 다채널 비음수 행렬 분해 기법을 이용하여 수신음의 다채널 스펙트로그램을 주파수 기저, 시간 기저, 빔형성기 이득으로 분석한 후, 적절한 기저를 선택하여 반사음의 주파수, 시간, 그리고 방위를 추정한다. 해당 알고리즘의 동작을 분석하기 위하여 다양한 신호대잔향음 환경에서의 시뮬레이션을 수행하였으며, 분석 결과 고안한 알고리즘이 주파수, 시간, 그리고 방위를 추정할 수 있으나 낮은 신호대잔향비 환경에서 성능이 저하됨을 확인할 수 있었다. 시뮬레이션 결과에 따르면, 향후 기저 선택 알고리즘을 수정함으로써 성능을 개선할 수 있을 것이라 예상된다.

Keywords

GOHHBH_2018_v37n6_489_f0001.png 이미지

Fig. 1. An illustrative diagram of a detection scenario in reverberant environments.

GOHHBH_2018_v37n6_489_f0002.png 이미지

Fig. 2. A block diagram of the proposed target detection system.

GOHHBH_2018_v37n6_489_f0003.png 이미지

Fig. 3. Multichannel Nonnegative matrix factorization model for the beamspace-domain data.

GOHHBH_2018_v37n6_489_f0004.png 이미지

Fig. 4. Selected frequency basis in the SRR conditions of (a) -4 dB, (b) -6 dB, (c) -8 dB, and (d) -10 dB. The vertical dashed line denotes the normalized Doppler frequency of the target echo.

GOHHBH_2018_v37n6_489_f0005.png 이미지

Fig. 5. Selected time basis in the SRR conditions of (a) -4 dB, (b) -6 dB, (c) -8 dB, and (d) -10 dB. The vertical dashed lines denote the start and the end frames of the target echo.

GOHHBH_2018_v37n6_489_f0006.png 이미지

Fig. 6. Beam gains of the selected source in the SRR conditions of (a) -4 dB, (b) -6 dB, (c) -8 dB, and (d) -10 dB. The vertical dashed line denotes the index of the beamformer whose desired angle is identical to the target bearing.

GOHHBH_2018_v37n6_489_f0007.png 이미지

Fig. 7. F-measures of the estimation results of the frequency, time, and bearing.

GOHHBH_2018_v37n6_489_f0008.png 이미지

Fig. 8. (a) The frequency basis, (b) the time basis, and (c) the beam gains of the selected basis and source by hand in the SRR condition of -10 dB.

References

  1. T. Collins and P. Atkins, "Doppler-sensitive active sonar pulse designs for reverberation processing," IEE Proc. of Radar, Sonar, and Navigation 145, 347-353 (1998).
  2. H. Cox and L. Hung, "Geometric comb waveforms for reverberation suppression," 28th Asilomar Conference on Signals, Systems and Computers 2, 1185-1189 (1994).
  3. J. M. Alsup, "Comb waveforms for sonar," 33rd Asilomar Conference on Signals, Systems and Computers 2, 864-869 (1999).
  4. Y. Doisy, L. Deuraz, S. P. van Ijsselmuide, S. P. Beerens, and R. Been, "Reverberation suppression using wideband Doppler-sensitive pulses," IEEE J. Ocean. Eng. 33, 419-433 (2008). https://doi.org/10.1109/JOE.2008.2002582
  5. S. Kay and J. Salisbury, "Improved active sonar detection using autoregressive prewhiteners," J. Acoust. Soc. Am. 87, 1603-1611 (1990). https://doi.org/10.1121/1.399408
  6. G. Ginolhac and G. Jourdain, "Principal component inverse algorithm for detection in the presence of reverberation," IEEE J. Ocean. Eng. 27, 310-321 (2002). https://doi.org/10.1109/JOE.2002.1002486
  7. W. Lei, Q. Zhang, X. Ma, and C. Hou, "Active sonar detection in reverberation via signal subspace extraction algorithm," EURASIP J. Wireless Communications and Networking 2010, 1-10 (2010).
  8. S. Lee, J. S. Lim, and M. Cheong, "Reverberation suppression algorithm for continuous-wave active sonar system based on overlapping nonnegative matrix factorization" (in Korean), J. Acoust. Soc. Kr. 36, 273-278 (2017).
  9. A. Ozerov and C. Fevotte, "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation," IEEE/ACM Trans. Audio, Speech, Language Process. 18, 550-563 (2010). https://doi.org/10.1109/TASL.2009.2031510
  10. S. Lee, S. H. Park, and K.-M. Sung, "Beamspace-domain multichannel nonnegative matrix factorization for audio source separation," IEEE Signal Process. Lett. 19, 43-46 (2012). https://doi.org/10.1109/LSP.2011.2173192
  11. W. S. Burdic, Underwater Acoustic System Analysis (Prentice-Hall, NJ, 1991), Chap. 12.
  12. D. A. Abraham and A. P. Lyons, "Simulation of non-rayleigh reverberation and clutter," IEEE J. Ocean. Eng. 29, 347-362 (2004). https://doi.org/10.1109/JOE.2004.828202