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CONVERGENCE ANALYSIS OF THE EAPG ALGORITHM

FOR NON-NEGATIVE MATRIX FACTORIZATION†

CHENXUE YANG∗ AND MAO YE

Abstract. Non-negative matrix factorization (NMF) is a very efficient
method to explain the relationship between functions for finding basis in-
formation of multivariate nonnegative data. The multiplicative update

(MU) algorithm is a popular approach to solve the NMF problem, but it
fails to approach a stationary point and has inner iteration and zero divisor.
So the elementwisely alternating projected gradient (eAPG) algorithm was

proposed to overcome the defects. In this paper, we use the fact that the
equilibrium point is stable to prove the convergence of the eAPG algorithm.
By using a classic model, the equilibrium point is obtained and the invari-
ant sets are constructed to guarantee the integrity of the stability. Finally,

the convergence conditions of the eAPG algorithm are obtained, which can
accelerate the convergence. In addition, the conditions, which satisfy that
the non-zero equilibrium point exists and is stable, can cause that the al-
gorithm converges to different values. Both of them are confirmed in the

experiments. And we give the mathematical proof that the eAPG algo-
rithm can reach the appointed precision at the least iterations compared
to the MU algorithm. Thus, we theoretically illustrate the advantages of
the eAPG algorithm.

AMS Mathematics Subject Classification : 15A60.
Key words and phrases : Non-negative matrix factorization, convergence,
equilibrium point.

1. Introduction

Non-negative matrix factorization (NMF) is a very efficient method to explain
the relationship between functions for finding basis information of multivariate
nonnegative data [1, 2]. By adding the constraint that all the elements of the
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matrix are non-negative, it’s fully to guarantee the interpretability of the de-
composition [3]. Besides, it simplifies the realization and takes little storage
space.

The traditional NMF problem may be described as a linear and non-negative
approximate representation. Given a non-negative data matrix V ∈ Rm×n,
NMF finds an approximate factorization

V ≈WH, (1)

where W and H are m×r and r×n non-negative matrices, respectively. Usually,
the positive integer r is chosen to be smaller than m or n, so that the size of W
and H are smaller than the original matrix V .

In fact, NMF is a problem of solving optimization. To find the matrices W
and H, the problem in (1) is commonly reformulated as minimizing the following
cost function:

f(W,H) :=
1

2
∥ V −WH ∥2F , (2)

where ∥ • ∥F represents the Frobenius norm.
In 1999, NMF was first published in [1]. Recently, NMF has received much

attention and been applied to many application areas including image databases
[5], subsystem identification [6], spectral data analysis [10], blind source separa-
tion (BSS) [14], text data mining [7, 8], speech processing [11, 12] and the novel
fast multi-objective evolutionary [23].

There are many types of NMF techniques in the literatures, such as gradient
descent methods [15], alternating least squares [4],and the popular multiplica-
tive update algorithm (MU) [1]. However, the MU algorithm fails to approach a
stationary point, which has been shown in [9] by numerical examples. For over-
coming the defects of the MU algorithm having inner iteration and zero divisor,
Lin [13] proposed three algorithms on NMF problem, which are the column-
wisely alternating gradient (cAG) algorithm, the columnwisely alternating pro-
jected gradient (cAPG) algorithm and the elementwisely alternating projected
gradient (eAPG) algorithm. And the eAPG algorithm can reach the appointed
precision at the least iterations compared to the MU, cAG and cAPG algorithms
in most cases. The cost functions of the eAPG algorithm is non-increasing as
that of the MU algorithm. Note that there does not exist the mathematical proof
of convergence of the eAPG algorithm. Therefore, in this paper, we analyze the
convergence of the eAPG algorithm and show the advantages theoretically.

Currently, many classical methods, which are focused on the convergence
analysis of the algorithms for NMF, have be found in the literatures , such as
projected gradient approaches [17], bound optimization [18] and so on. Further-
more, some algorithms to accelerate the convergence are designed in [19]. In
this paper, we will utilize the fact that the equilibrium point is stable to prove
the convergence of the eAPG algorithm. First, we prove the existence of the
equilibrium point by the Squeeze Theorem. Then, a classic model proposed in
[20], is used to obtain the equilibrium point. At last, by using the method in
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[16], we construct the invariant sets to constrain the area of the initializations to
guarantee the integrity of the convergence analysis. By using the method of the
above theories, we prove the eAPG algorithm is locally convergent. In addition,
the conditions, which satisfy that the non-zero equilibrium point exists and is
stable, can cause that the algorithm converges to different values.

Our contributions can be summarized as follows: First, we prove the conver-
gence of the eAPG algorithm and obtain the structure of the equilibrium points,
which lay a foundation for better understanding of the eAPG algorithm. Sec-
ond, we show the advantages of the eAPG algorithm theoretically. And give the
mathematical proof that the eAPG algorithm can reach the appointed precision
at the least iterations.

This paper is structured as follows: A brief review of the eAPG algorithm is
given in Section 2. In Section 3, we prove the existence of the equilibrium points
of the eAPG algorithm and obtain their expressions by using the classic model
in [20]. In Section 4, we construct the invariant sets to constrain the area of
initializations and prove the convergence of the eAPG algorithm in Section 5. In
Section 6, the simulations of the eAPG algorithm confirm our theories. Finally,
a conclusion is given in Section 7.

2. Non-negative Matrix Factorization Algorithms

The multiplicative update (MU) algorithm is proposed by Lee and Seung [1]
to solve the objective function (2), which is not defined well. In addition, it
may appear inner iteration. To overcome these defects, Lin proposed the eAPG
algorithm [13] which is described generally as follows:

1. Set H = rand(r, n); W = rand(m, r);
2. For iter = 1: maxiter, compute

Hij = Hij − ηij , for j = 1, 2, ..., n; i = 1, 2, ..., r, (3)

Wij = Wij − ξij , for i = 1, 2, ...,m; j = 1, 2, ..., r, (4)

where ηij is calculated by

ηij =

 η∗ij , if hij − η∗ij ≥ 0 and Wi ̸= 0,

0, otherwise,
(5)

and

η∗ij =
(Wi)

T (WHj − Vj)

(Wi)TWi
, (6)

and ξij is defined by

ξij =

 ξ∗ij , if wij − ξ∗ij ≥ 0 and Hj ̸= 0,

0, otherwise,
(7)
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and

ξ∗ij =
(HT

j )
T (HTWT

i − V T
i )

(HT
j )

THT
j

. (8)

3. Existence of Equilibrium Points

Similarly, as the method in [16], before analyzing the convergence of the eAPG
algorithm, we need to prove the existence of the equilibrium points and obtain
the structures of them. Both H and W will be updated alternately using Eq. (3)
and Eq. (4), but they are computed separately. Thus, we consider W being fixed
firstly to prove that the equilibrium point of H exists. And by using the model
in [20], we obtain its structure. Then, we fix H to prove that the equilibrium
point of W exists, and obtain its structure in the same way.

From the description of W and H, we have the following expressions

WHj =



r∑
i=1

w1ihij

r∑
i=1

w2ihij

...
r∑

i=1

wmihij


(9)

and

(Wi)
T (WHj − Vj) =

m∑
k=1

wki(

r∑
i=1

wkihij − vkj) . (10)

From Eq. (6), it follows that

η∗ij =

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
. (11)

From Eq. (5), if hij − η∗ij ≥ 0, then

ηij =

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
. (12)

From Eq. (3) and Eq. (12), we have the following algorithm

hij ←− hij −

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
. (13)
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To discuss the convergence of the eAPG algorithm for H, we only need to discuss
the convergence of algorithm (13).

Definition 1. For the algorithm (13), a point hij ∈ R is called an equilibrium
if and only if it satisfies

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
= 0. (14)

Denote

f(hij) =

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
. (15)

We assume all elements in H except hij , wki and vkj in W and V are
constants. In addition, in each iteration, both hij and wij will be updated
alternately. Thus, it is reasonable to consider wij as a constant here for the
convergent analysis of hij . Similarly, for the analysis of wij , we consider hij as
a constant.

Theorem 1. There exists h
(0)
ij ∈ [0,∞), such that f(h

(0)
ij ) = 0, i.e., h

(0)
ij is the

equilibrium of algorithm (13).

Proof. Obviously, f(hij) is a continuous function. For the initialization A in

Eq. (14), let h
(1)
ij > 0 and

r∑
i=1

wkih
(1)
ij < vkj . From Eq. (10), we obtain

m∑
k=1

wki(
r∑

i=1

wkih
(1)
ij − vkj) < 0. Thus, from Eq. (15), there is

f(h
(1)
ij ) =

m∑
k=1

wki(
r∑

i=1

wkih
(1)
ij − vkj)

m∑
k=1

(wki)2
< 0.

Increasing h
(1)
ij , we can obtain another point h

(2)
ij , such that

r∑
i=1

wkih
(2)
ij > vkj .

Similarly,

f(h
(2)
ij ) =

m∑
k=1

wki(
r∑

i=1

wkih
(2)
ij − vkj)

m∑
k=1

(wki)2
> 0.
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According to the Intermediate Value Theorem, there exists h
(0)
ij , h

(1)
ij < h

(0)
ij <

h
(2)
ij , such that

f(h
(0)
ij ) =

m∑
k=1

wki(
r∑

i=1

wkih
(0)
ij − vkj)

m∑
k=1

(wki)2
= 0.

�

From Theorem 1, algorithm (13) exists the equilibrium point h
(0)
ij . Next, we

need to obtain the structure of h
(0)
ij to analyze the stability of algorithm (13).

From the classic model in [20], we have the following lemma.

Lemma 1. In difference system x(t + 1) − x(t) = F (x(t)), there exists an
equilibrium point x⋆, if F1(x) ≤ F (x) ≤ F2(x), where F1(x) and F2(x) are
monotonous, which satisfies η1F2(x

⋆)− F (x⋆) = F (x⋆)− η2F1(x
⋆) = 0.

Lemma 1 is used to obtain the structure of the equilibrium point. For sim-
plicity, we denote

w1 = min
1≤k≤m,1≤i≤r

{wki}, w2 = max
1≤k≤m,1≤i≤r

{wki}, (16)

v1 = min
1≤k≤m,1≤j≤n

{vkj}, v2 = max
1≤k≤m,1≤j≤n

{vkj}. (17)

Note that all elements in the jth column of H except hij are constants, then we
assume

P =

r∑
p=1

hpj − hij . (18)

Using these notations, we have the following theorem.

Theorem 2. There exists a non-zero equilibrium point of algorithm (13), for
some constants 0 ≤ η1 ≤ 1 and η2 ≥ 1, the structure of the equilibrium point is

hij =
v1

η1w2
− P or hij =

v2
η2w1

− P in the condition η2w1v1 = η1w2v2.

Proof. For the term

r∑
i=1

wkihij =

i−1∑
p=1

wkphpj +

r∑
q=i+1

wkqhqj + wkihij ,

from the above equations, we have

w1(P + hij)− v2 ≤
r∑

i=1

wkihij − vkj ≤ w2(P + hij)− v1.
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In the above inequalities, only hij is variable and all the others are constants,
there is

w1[w1(P + hij)− v2]

w2
2

≤

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
≤ w2[w2(P + hij)− v1]

w2
1

. (19)

For the given initializations ofW andH, we can choose two constants 0 ≤ η1 ≤ 1
and η2 ≥ 1, such that

w1[η2w1(P + hij)− v2]

w2
2

≤

m∑
k=1

wki(
r∑

i=1

wkihij − vkj)

m∑
k=1

(wki)2
≤ w2[η1w2(P + hij)− v1]

w2
1

. (20)

Base on Lemma 1, from Eq. (14), we obtain the following two equations,

w2[η1w2(P + hij)− v1]

w2
1

= 0 (21)

and
w1[η2w1(P + hij)− v2]

w2
2

= 0. (22)

Eq. (21) has solution

hij =
v1

η1w2
− P. (23)

And Eq. (22) has solution

hij =
v2

η2w1
− P. (24)

From Theorem 1 and the above analysis, there exists an equilibrium point for
the algorithm (13) if the non-zero solutions of Eq. (14) satisfy

v1
η1w2

− P =
v2

η2w1
− P.

The above equation can be simplified to

η2w1v1 = η1w2v2, (25)

which is the condition of existence of equilibrium.
Therefore, from Lemma 1, for the algorithm (13), the structure of the equi-

librium point is Eq. (23) or Eq. (24) which satisfies Eq. (25). �

Analogously, for a fixed H, we can get similar results with respect to W .
Similarly, we have the following expressions,

(HT
j )

T (HTWT
i − V T

i ) =
n∑

p=1

hjp(
r∑

k=1

hkpwik − vip). (26)
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From Eq. (8), it follows that

ξ∗ij =

n∑
p=1

hjp(
r∑

k=1

hkpwik − vip)

n∑
p=1

(hjp)2
. (27)

From Eq. (7), if hij − ξ∗ij ≥ 0, then

ξij =

n∑
p=1

hjp(
r∑

k=1

hkpwik − vip)

n∑
p=1

(hjp)2
. (28)

Hence, we need to discuss the convergence of the following algorithm,

wij ←− wij −

n∑
p=1

hjp(
r∑

k=1

hkpwik − vip)

n∑
p=1

(hjp)2
. (29)

Definition 2. For the algorithm (29), a point wij ∈ R is called an equilibrium
if and only if it satisfies

n∑
p=1

hjp(
r∑

k=1

hkpwik − vip)

n∑
p=1

(hjp)2
= 0. (30)

Denote

h1 = min
1≤j≤r,1≤p≤n

{hjp}, h2 = max
1≤j≤r,1≤p≤n

{hjp},

and

Q =

r∑
k=1

wik − wij ,

where Q representatives as the sum of all elements in the ith row of H except
hij . Contrarily, only wij is variable and all the others are constants, then we
have

h1[h1(Q+ wij)− v2]

h2
2

≤

n∑
p=1

hjp(
r∑

k=1

hkpwik − vip)

n∑
p=1

(hjp)2
≤ h2[h2(Q+ wij)− v1]

h2
1

,

which is similar to the inequality (19). From this expression, we have the
following Theorem.
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Theorem 3. There exists a non-zero equilibrium point of algorithm (29), for
some constants 0 ≤ η1 ≤ 1 and η2 ≥ 1, the structure of equilibrium point is

wij =
v1

η1h2
−Q or wij =

v2
η2h1

−Q in the condition η2h1v1 = η1h2v2.

Proof. The proof is similar to Theorem 2. �

From Eq. (25), the condition, which satisfies that the non-zero equilibrium
point exists, is determined by η1 and η2. Then, the value of η1 or η2 can cause
that the algorithm converges to different values, which will be verified in the
experiments.

4. Invariant Sets

Definition 3 ([21]). A set S is called an invariant set for a dynamic system
xn+1 = f(xn), if for any initial value x0 ∈ S, the updates xn+1 of system
starting from x0 will remain in S for all n ≥ 0.

From the proof of Theorem 2, we assume all the others are constants except
hij , which can be decided in the upcoming discussion. We can prove Theorems
4 and 5.

Denote

H1 = {hij |hij ∈ R,
v1
w2
− P ≤ hij ≤

v2
w1
− P}, (31)

W1 = {wij |wij ∈ R,
v1
h2
−Q ≤ wij ≤

v2
h1
−Q}. (32)

Theorem 4. Suppose v1, v2, w1, w2 and P are constants, H1 is an invariant
set of algorithm (13).

Proof. Suppose

0 <
v1
w2
− P ≤ hij(t) ≤

v2
w1
− P. (33)

From algorithm (13), for the (t+ 1)th update, we have

hij(t+ 1) = hij(t)−

m∑
k=1

wki

( r∑
i=1

wkihij(t)− vkj
)

m∑
k=1

(wki)2
. (34)

From the inequality (19), it follows that

hij(t)−
w2

[
w2

(
P + hij(t)

)
− v1

]
w2

1

≤ hij(t+ 1) ≤ hij(t)−
w1

[
w1

(
P + hij(t)

)
− v2

]
w2

2

,

where v1, v2, w1, w2 and P are constants. And the above inequality follows
that

hij(t)
(
1− w2

2

w2
1

)
− w2

2

w2
1

P +
w2

w2
1

v1 ≤ hij(t+ 1) ≤ hij(t)
(
1− w2

1

w2
2

)
− w2

1

w2
2

P +
w1

w2
2

v2.
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From the inequality (33), we have

(
v1
w2

− P )
(
1− w2

2

w2
1

)
− w2

2

w2
1

P +
w2

w2
1

v1 ≤ hij(t+ 1) ≤ (
v2
w1

− P )
(
1− w2

1

w2
2

)
− w2

1

w2
2

P +
w1

w2
2

v2.

Thus, the above inequality can be simplified to
v1
w2
− P ≤ hij(t+ 1) ≤ v2

w1
− P. (35)

which is same as the inequality (33). The inequality (35) shows that for any

t ≥ 0, if
v1
w2
− P ≤ hij(t) <

v2
w1
− P , there always exists

v1
w2
− P ≤ hij(t+ 1) ≤

v2
w1
− P . Therefore, H1 is an invariant set of algorithm (13). �

Theorem 5. Suppose v1, v2, h1, h2 and Q are constants, W1 is an invariant
set of algorithm (29).

Proof. The proof can be omitted since it’s similar to Theorem 4. �
Theorem 4 and 5 guarantee that any trajectory of algorithm (13) and algo-

rithm (29) starting from any points in the invariant sets H1 and W1 will stay in
H1 and W1 correspondingly. In the following section, we will prove the equilib-
rium point is stable to complete the proof of convergence.

5. Convergence Analysis

Theorem 6. For the algorithm (13), the non-zero equilibrium point is stable if
it satisfies the condition Eq. (25) and is restricted in the invariant set (31).

Proof. From Eq. (34) and Eq. (15), it follows that

hij(t+ 1) = hij(t)− f(hij(t)). (36)

To discuss the convergence of algorithm (13), from Eq. (14), we just need to
discuss the stability of f(hij). From the inequality (20), for simplicity, we denote

G1(hij) =
w2[η1w2(P + hij)− v1]

w2
1

(37)

and

G2(hij) =
w1[η2w1(P + hij)− v2]

w2
2

, (38)

which have
G2(hij) ≤ f(hij) ≤ G1(hij).

Using Lemma 1 to obtain the equilibrium point, G1(hij) andG2(hij) must satisfy
monotonicity. In addition, the terms that we substitute the equilibrium point
into the derivatives of G1(hij) and G2(hij) need to be less than 1 [21].

First, we discuss the monotonicity of the following G1(hij) and G2(hij). From
Eq. (37) and Eq. (38), there is

G′
1(hij) =

η1w
2
2

w2
1

> 0,
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and similarly

G′
2(hij) =

η2w
2
1

w2
2

> 0.

Substituting the non-zero solutions of Eq. (23) and Eq. (24) into the above
equations, we obtain

d(G1(hij))

dhij
| v1
η1w2

− P
=

η1w
2
2

w2
1

< 1

and
d(G2(hij))

dhij
| v2
η2w1

− P
=

η2w
2
1

w2
2

< 1.

Therefore, for some constants 0 ≤ η1 ≤ 1 and η2 ≥ 1, if it satisfies the following
inequality

η1w
2
2 < w2

1 ≤ η2w
2
1 < w2

2, (39)

the equilibrium point is stable. Therefore, base on Lemma 1, the function f(hij)

is stable at the equilibrium point
v1

η1w2
−P or

v2
η2w1

−P in the invariant set H1

if it satisfies the condition Eq. (39). �

By the same way, we have the stability theorem for wij in algorithm (29).

Theorem 7. For the algorithm (29), the non-zero equilibrium point exists and
is stable if it’s restricted in the invariant set (32).

From Theorem 2 and Theorem 6, we have that the equilibrium point of algo-
rithm (13) is stable, and from Theorem 4 we know that all the initializations are
constrained in the invariant sets, which means the equilibrium point of algorithm
(13) is stable in H1.

According to the Theorem 4 in [22], we obtain the eAPG algorithm is lo-
cally convergent at the equilibrium points in the invariant sets. There are two
conditions to constrain the convergence of the eAPG algorithm. For hij , one
condition comes from the restrictions on invariant set H1, and another condi-
tion comes from the conditions of existence of equilibrium. From the inequality
(39), the condition, which satisfies that the non-zero equilibrium point is stable,
is also determined by η1 and η2. And the value of η1 or η2 can cause that the
algorithm converges to different values. Now, we will confirm this circumstance
in the experiments.

6. Simulation and Discussions

With various statistical distributions, NMF algorithms have been extensively
used to test data for signals and images. In this section, we present numerical
experimental results to illustrate the convergence of the eAPG algorithm and
analyze the importance of the two convergence conditions, especially Eq. (25)
and the inequality (39).
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Figure 1. The convergence of h11.
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Figure 2. The convergence of w11.

For NMF algorithms in the practical application, we want to choose suitable
initializations to obtain the correct data separation by testing several groups
data. To estimate the original sources in a very small error, the stable conditions
Eq. (31), Eq. (32) and the inequality (25) are satisfied in the initializations.
Then we have the following description of the algorithm steps [16].

1. Initialize the vector hij and non-negative matrix W = {wki}mr with
positive decimal numbers;

2. According the computing result of P , Q and {vkj}m×n, select suitable

α =
η1
η2

for the test;

3. To avoid the divergence, set the threshold for hij and wij to 0.001-0.005,
testing the convergence condition;

4. Compute hij and wij according to the algorithm (13) and (29) to obtain
the factorization of vpj .

5. If hij and wij have not converged, go back to step 3.
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Figure 3. The convergence of the algorithm (40) with different v11.

In experiment 1, we first select a group of data to demonstrate the analysis
results. Without loss of generality, we only consider the convergence of w11 and
h11 with different initializations. From algorithm (13), it follows that

h11 ←− h11 −

m∑
k=1

wk1(
r∑

i=1

wkihi1 − vk1)

m∑
k=1

(wk1)2
. (40)

We test the algorithm (40) for a randomly generated full column rank matrix

V ∈ R100×100. For initializations of P =
r∑

p=1
hp1−h11 = 1.01, with the condition

η1w
2
2 < w2

1 ≤ η2w
2
1 < w2

2, we select α = 0.01. Here, we show the convergence of
h11 in Figure 1 and the convergence of w11 in Figure 2, respectively. Therefore,
for different initializations of h11, it always converges to the same constant if the
condition η1w

2
2 < w2

1 ≤ η2w
2
1 < w2

2 is satisfied. And w11 has the same result.
The convergence of the eAPG algorithm is verified.

In experiment 2, we test the algorithm (40) for a randomly generated full
column rank matrix V and the matrix W ∈ R100×100. For initializations of
P = 1.01, with the condition η1w

2
2 < w2

1 ≤ η2w
2
1 < w2

2, we select w1 = 1.21,
w2 = 3.01 and η1 = 0.1. To show the simulation result, we change v11. Figure
3 shows that the trend and the number of iterations are almost the same with
different values of v11. Thus, the change of v11 affect little the convergence of
the algorithm.

To improve the speed and accuracy of the algorithm, a good initialization is
very important. If the initializations are selected improperly, even it satisfies the
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Figure 4. The convergence of the algorithm (40) with η1 = 0.1.
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Figure 5. The convergence of the algorithm (40) with η1 = 0.2.

condition Eq. (25), the algorithm may iterate many times to converge. Then, we
want to find which element can affect the initialization in the eAPG algorithm.

In experiment 3, we test the algorithm (40) for the same matrix V ∈ R100×100

as that in experiment 2. From Eq. (25), we can find that the condition, which
satisfies that the non-zero equilibrium point exists, is determined by η1 and
η2. With different initializations of η1, the convergence of the algorithm (40) is
shown in Figure 4 and Figure 5.
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Figure 4 shows that the algorithm (40) converges to 2.34 in the condition
η1 = 0.1 , and Figure 4 shows that the algorithm (40) converges to 0.668 in the
condition η1 = 0.2. Different values of η1 and η2 will affect that the algorithm
converge to different values. Therefore, it’s important to select the appropriate
η1 and η2.

7. Conclusion

In this paper, we analyze the convergence of the eAPG algorithm by utiliz-
ing the fact that the equilibrium point is stable. We obtained the structure
of the equilibrium points and the convergence conditions. In addition, using
the conditions of the initialization constraints can accelerate the convergence of
the algorithm. In the end, simulations illustrate the advantages of the eAPG
algorithm and support our theories.
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