• Title/Summary/Keyword: matrix analysis

Search Result 5,853, Processing Time 0.036 seconds

Second-order analysis of planar steel frames considering the effect of spread of plasticity

  • Leu, Liang-Jenq;Tsou, Ching-Huei
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.423-442
    • /
    • 2001
  • This paper presents a method of elastic-plastic analysis for planar steel frames that provides the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for the effect of spread of plasticity accurately without discretization through the cross-section of a beam-column element, which is achieved by the following procedures. First, nonlinear equations describing the relationships between generalized stresses and strains of the cross-section are derived analytically. Next, nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear analysis procedures. The accuracy of the proposed method is verified by several examples that are sensitive to the effect of spread of plasticity.

PCB Board Impedance Analysis Using Similarity Transform for Transmission Matrix (전송선로행열에 대한 유사변환을 이용한 PCB기판 임피던스 해석)

  • Suh, Young-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2052-2058
    • /
    • 2009
  • As the operating frequency of digital system increases and voltage swing decreases, an accurate and high speed analysis of PCB board becomes very important. Transmission matrix method, which use the multiple products of unit column matrix, is the highest speedy method in PCB board analysis. In this paper a new method to reduce the calculation time of PCB board impedances is proposed. First, in this method the eigenvalue and eigenvectors of the transmission matrix for unit column of PCB are calculated and the transmission matrix for the unit column is transformed using similarity transform to reduce the number of multiplication on the matrix elements. This method using the similarity transform can reduce the calculation time greatly comparing the previous method. The proposed method is applied to the 1.3 inch by 1.9 inch board and shows about 10 times reduction of calculation time. This method can be applied to the PCB design which needs a lots of repetitive calculation of board impedances.

A Classifier for Textured Images Based on Matrix Feature (행렬 속성을 이용하는 질감 영상 분별기)

  • 김준철;이준환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.91-102
    • /
    • 1994
  • For the analysis of textured image, it requires large storage space and computation time to calculate the matrix features such as SGLDM(Spatial Gray Level Dependence Matrix). NGLDM(Neighboring Gray Level Dependence Matrix). NSGLDM(Neighboring Spatial Gray Level Dependence Matrix) and GLRLM(Gray Level Run Length Matrix). In spite of a large amount of information that each matrix contains, a set of several correlated scalar features calculated from the matrix is not sufficient to approximate it. In this paper, we propose a new classifier for textured images based on these matrices in which the projected vectors of each matrix on the meaningful directions are used as features. In the proposed method, an unknown image is classified to the class of a known image that gives the maximum similarity between the projected model vector from the known image and the vector from the unknown image. In the experiment to classify images of agricultural products, the proposed method shows good performance as much as 85-95% of correct classification ratio.

  • PDF

A Note on Eigen Transformation of a Correlation-type Random Matrix

  • Kim, Kee-Young;Lee, Kwang-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.339-345
    • /
    • 1993
  • It is well known that distribution of functions of eigen values and vectors of a certain matrix plays an important role in multivariate analysis. This paper deals with the transformation of a correlation-type random matrix to its eigen values and vectors. Properties of the transformation are also considered. The results obtained are applied to express the joint distribution of eigen values and vectors of the correlation matrix when sample is taken from a m-variate spherical distribution.

  • PDF

FETM을 이용한 다자유도 회전체 시스템의 진동해석

  • 김승현;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.818-821
    • /
    • 1995
  • A MDOF vibration analysis of the rotor is performed using combined modeling of transfer matrix method and finite element method(FETM). The method combines the advantages of both matrix. Each rotor is modelled using transfer matrix method and treated one element or several ones. The finite element method is applied in composing a system matrix and finding roots. The method used in this is more efficient than conventional finite element method in saving calculation time and provides good results in complex MDOF rotor model.

  • PDF

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

Dynamic Analysis of Cracked Timoshenko Beams Using the Transfer Matrix Method (전달행렬법을 사용하여 균열이 있는 티모센코 보의 동특성 해석)

  • Kim, Jung Ho;Kwak, Jong Hoon;Lee, Jung Woo;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • This paper presents a numerical method that can evaluate the effect of crack for the in-plane bending vibration of Timoshenko beam. The method is a transfer matrix method that the element transfer matrix is deduced from the element dynamic stiffness matrix. An edge crack is expressed as a rotational spring, and then is formulated as an independent transfer matrix. To demonstrate the accuracy of this theory, the results computed from the present are compared with those obtained from the commercial finite element analysis program. Based on these comparison results, a parametric study is performed to analyze the effects for the size and locations of crack.

Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate (Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구)

  • 김용우;박춘수;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

ANALYSIS OF THE UPPER BOUND ON THE COMPLEXITY OF LLL ALGORITHM

  • PARK, YUNJU;PARK, JAEHYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.107-121
    • /
    • 2016
  • We analyze the complexity of the LLL algorithm, invented by Lenstra, Lenstra, and $Lov{\acute{a}}sz$ as a a well-known lattice reduction (LR) algorithm which is previously known as having the complexity of $O(N^4{\log}B)$ multiplications (or, $O(N^5({\log}B)^2)$ bit operations) for a lattice basis matrix $H({\in}{\mathbb{R}}^{M{\times}N})$ where B is the maximum value among the squared norm of columns of H. This implies that the complexity of the lattice reduction algorithm depends only on the matrix size and the lattice basis norm. However, the matrix structures (i.e., the correlation among the columns) of a given lattice matrix, which is usually measured by its condition number or determinant, can affect the computational complexity of the LR algorithm. In this paper, to see how the matrix structures can affect the LLL algorithm's complexity, we derive a more tight upper bound on the complexity of LLL algorithm in terms of the condition number and determinant of a given lattice matrix. We also analyze the complexities of the LLL updating/downdating schemes using the proposed upper bound.