• Title/Summary/Keyword: matrix analysis

Search Result 5,845, Processing Time 0.035 seconds

A Combustion Instability Analysis of a Model Gas Turbine Combustor by the Transfer Matrix Method

  • Cha, Dong-Jin;Kim, Jay-H.;Joo, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2946-2951
    • /
    • 2008
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach.

  • PDF

Proposal of Matrix Spacing Factor for Analyzing Air Void System in Hardened Concrete (콘크리트 내부공극 분석을 위한 행렬간격계수 모델식의 제안)

  • Jeong Won-Kyong;Jun In-Koo;Kim Yong-Kon;Lee Bong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.679-682
    • /
    • 2004
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance. Linear traverse method and point count method described at ASTM is the routine analysis of the air void system that have been widely used to estimate the spacing factor in hardened concrete. Recently, many concretes often have a spacing factor higher than the generally accepted $200-250{\mu}m$ limit for the usual range of air contents. This study is proposed to estimate the matrix spacing factor by calculation of simplicity. The matrix spacing factor needs two parameters that are air content and numbers of air voids in the hardened concrete. Those are obtained from the standard air-void system analysis of the ASTM C 457. The equation is valid for all values of paste-to-air ratio because the estimation of paste content is unnecessary at the using ASTM C 457. The matrix spacing factor yields a similar estimate of the standard spacing factor.

  • PDF

A Discretization Algorithm for Bi-Matrix Game Approach to Power Market Analysis (전력시장 해석을 위한 Bi-matrix 게임의 이산화 알고리즘)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • An important aspect of the study of power system markets involves the assessment of strategic behavior of participants for maximizing their profits. In models of imperfect competition of a deregulated electricity system, the key task is to find the Nash equilibrium. In this paper, the bimatrix approach for finding Nash equilibria in electricity markets is investigated. This approach determines pure and mixed equilibria using the complementarity pivot algorithim. The mixed equilibrium in the matrix approach has the equal number of non-zero property. This property makes it difficult to reproduce a smooth continuous distribution for the mixed equilibrium. This paper proposes an algorithm for adjusting the quantization value of discretization to reconstruct a continuous distribution from a discrete one.

Statistical Analysis of Interfacial Shear Strength on Fiber-Matrix (섬유-Matrix의 계면전단강도에 관한 통계적고찰)

  • 문창권;남기우;엄윤성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 1992
  • The effect of fiber diameter and gauge length on pull-out test for the interfacial properties in fiber reinforced resin composites have been investigated and these results have been arranged as statistical analysis. The fiber and matrix resins used for this study were stainless steel fiber (SUS316) and carbon fiber (high strength type), epoxy and high density polyethylene resin. From this study, it has been found that shear strength are constant regardless of gauge length of pull-out test and coefficient of variation depend on fiber diameter. In addition, it has been found that the interfacial shear strength decreased with the increasing fiber diameter, and in all case, Weibull parameter (m) has approximately 1.2/C.O.V.

Vibration Analysis of Expansion Joint based on Transfer Matrix Method Considering the Rotary Inertia (회전 관성을 고려한 전달행렬법 기반의 Expansion Joint 진동해석)

  • Shin, Dong-Ho;Kim, Sang-Ho;Yoon, Hyung-Ho;Lim, Hee-Gon;Oh, Jae-Eung;Lee, Jung-Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.665-673
    • /
    • 2011
  • Simplified formulae for axial and bending natural frequencies of a bellows are developed using an equivalent thin-walled pipe model. The axial and bending stiffness of bellows is determined using lumped transfer matrix method. Transfer matrix method which includes the rotary inertia is used to calculate the natural frequencies for axial and lateral vibration. The result from the simplified formula are verified by those from as experiment result and a finite element analysis. This comparisons show good agreement with the each other.

Condensation of independent variables in free vibration analysis of curved beams

  • Mochida, Yusuke;Ilanko, Sinniah
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • In this paper, the condensation method which is based on the Rayleigh-Ritz method, is described for the free vibration analysis of axially loaded slightly curved beams subject to partial axial restraints. If the longitudinal inertia is neglected, some of the Rayleigh-Ritz minimization equations are independent of the frequency. These equations can be used to formulate a relationship between the weighting coefficients associated with the lateral and longitudinal displacements, which leads to "connection coefficient matrix". Once this matrix is formed, it is then substituted into the remaining Rayleigh-Ritz equations to obtain an eigenvalue equation with a reduced matrix size. This method has been applied to simply supported and partially clamped beams with three different shapes of imperfection. The results indicate that for small imperfections resembling the fundamental vibration mode, the sum of the square of the fundamental natural and a non-dimensional axial load ratio normalized with respect to the fundamental critical load is approximately proportional to the square of the central displacement.

Estimation of high-dimensional sparse cross correlation matrix

  • Yin, Cao;Kwangok, Seo;Soohyun, Ahn;Johan, Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.655-664
    • /
    • 2022
  • On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative one.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Seismic damage vulnerability of empirical composite material structure of adobe and timber

  • Si-Qi Li
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.429-442
    • /
    • 2023
  • To study the seismic vulnerability of the composite material structure of adobe and timber, we collected and statistically analysed empirical observation samples of 542,214,937 m2 and 467,177 buildings that were significantly impacted during the 179 earthquakes that occurred in mainland China from 1976 to 2010. In multi-intensity regions, combined with numerical analysis and a probability model, a non-linear continuous regression model of the vulnerability, considering the empirical seismic damage area (number of buildings) and the ratio of seismic damage, was established. Moreover, a probability matrix model of the empirical seismic damage mean value was provided. Considering the coupling effect of the annual and seismic fortification factors, an empirical seismic vulnerability curve model was constructed in the multiple-intensity regions. A probability matrix model of the mean vulnerability index (MVI) was proposed, and was validated through the above-mentioned reconnaissance sample data. A matrix model of the MVI of the regions (19 provinces in mainland China) based on the parameter (MVI) was established.

Softening Analysis of Reinforced Concrete Frames (철근콘크리트 골조의 연성화 해석)

  • 나유성;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.438-443
    • /
    • 1998
  • Softening os the name used for decreasing bending moment at advanced flexural deformation. To accommodate softening deformation in analysis, it is assumed that a hinge has finite length. The softening analysis of R/C frames relies on the primary assumption that softening occurs over a finite hinge length and that the moment-curvature relationship for any section may be closely described by a trilinear approximation. A stiffness matrix for elastic element with softening regions are derived and the stiffness matrix allows extension of the capability of an existing computer program for elastic-plastic analysis to the softening situation. The effect of softening on the collapse load of R/C frame is evaluated.

  • PDF