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  Abstract 

 
Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low 

emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process 

and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-

excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix 

method is developed. The method views the combustion system as a one-dimensional acoustic system with a side 

branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages 

of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a 

simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach. 

 

 

1. Introduction 

 
Combustion instability is induced by the coupling 

effect of the unsteady heat release of the combustion 

process and the change in the acoustic pressure in the gas 

manifold of the combustion chamber [1,2,3]. Such 

instabilities can cause various problems in the 

combustion system, including poor efficiency, premature 

degradation of components, and even a catastrophic 

failure of the system. Because the combustion instability 

is a very complex phenomenon, an accurate, full-scale 

quantitative analysis of the non-linear combustion 

response is very difficult. However, a simple but reliable 

analysis method can be developed to predict the onset of 

combustion instability based on a linear model. Such a 

method can be used to understand the condition of the 

instability and to obtain design guidelines.  

The main purpose of this paper was to develop a new 

approach based on the transfer matrix method to analyze 

the combustion instability. The transfer matrix, which is 

also called four-pole matrix, is a very convenient concept 

to model a complex one-dimensional acoustic systems 

[4,5]. Richards et al. applied the transfer matrix method 

to model the combustion system as a feed-back control 

system [3]. In their model, the transfer matrix method 

was used to obtain impedances at various points, which 

were used to obtain the control model. The method we 

developed in this paper, the combustion system is 

modeled by using a side branch description to represent 

the flame point as the system input. This enables much 

simpler, straightforward modeling of the system. 

 

 

2. Description of the System by a Wave Eq. 
 

Figure 1 shows a simple combustion system that will 

be used to develop the analysis method. A large plenum 

is attached to the left end, which is modeled as the 

pressure release end, and the flow is restricted in the 

right end, which is modeled as the close end. The heat 

source at x=b is modeled as a point source. The 

combustion process is described by: 

 

(1) 

         

where, p is the acoustic pressure, c is the sonic velocity 

and hw is the source term due to combustion. For the 1-D 

system shown in Fig. 1, the equation becomes [2] 

 

(2) 

 

where, q is the rate of heat release per area and       is 

the Dirac delta function. A model that relates the heat 

release and acoustic variables is necessary. One of simple 

models is  

 

 

 
Fig. 1  A simple combustion system. 
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(3) 

 

where, u(b
-
, t-τ) is the particle velocity at x = b

-
, τ is the 

time delay, which is the convection time from fuel 

injection to its combustion, and β is a non-dimensional 

parameter that has to be determined empirically. 

Eq. (2) can be compared with the Lighthill’s equation, 

an inhomogeneous wave equation with a mass flow 

source. 

 

(4) 

 

where, m is the mass flow input to the system per unit 

volume. By comparing Eq. (4) with Eq. (2), we find that 

 

(5) 

 

Substituting Eq. (3) into Eq. (5) and simplifying, we find 

that 

 

(6) 

 

If the flow is harmonic, etc, Eq. (6) becomes 

 

(7) 

 

where, upper case implies the harmonic amplitude. 

 

 

3. Review of Two Existing Solution Methods 
 

3.1 Method Based on Assumed Modeshape 

In the system shown in Fig. (1), the boundary 

conditions are 

 

(8) 

 

The conditions are satisfied if P(x)=Asin(kx) and P(x)= 

Bcos[k(l-x)], respectively. With these, at x=b, the 

pressure continuity condition is 

 

(9) 

 

The velocity jump condition is 

 

(10) 

 

Combining Eqs. (9) and (10), the frequency equation is  

obtaind as 

   

(11) 

 

The resonance frequency can be obtained by solving 

Eq. (11) by a numerical method. If the i
th

 root of Eq. (11) 

is, ωi the normalized frequency and normalized growth 

rate are obtained as 

 

 

(12) 

 

(13) 

 

where ωni is the i
th

 undamped resonant frequency. A 

positive growth rate gNi indicates that the combustion 

unstable. 

Figure 2 shows the trend of instability as a function of 

the growth rate β and the time delay τ. Notice that the 

combustion process becomes unstable in the frequency 

range in that gN  is positive. The magnitude of gN 

indicates the strength of instability. 

 

3.2 Solution by Galerkin’s Method 

The pressure in the system can be assumed as a linear 

superposition of the natural modes as follows. 

 

 (14) 

 

where, ψm(x) is the m
th

 mode and 
m is the participation 

factor of the mode. Substituting Eq. (14) into Eq. (2) and 

applying the orthogonal property of the natural modes, 

we obtain   

 

 

(15) 

 

 

where, m=1,2,3,… Eq. (15) is still coupled because 

 

(16-a) 

 

and, u in Eq. (16-a) is 

 

 

(16-b) 

  

 

 

 

 
 

Fig. 2  Variation of instability frequency and growth 

rate with τ for the root of Eq. (11) near 𝜔𝑛𝑖 , taking b/l = 

0.1 and β’s different [Similar to one in Ref. 2]. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1


1
*/(2)

f N

b/l = 0.1

 =0.2

 =0.4

 =0.6

 =0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.1

0

0.1


1
*/(2)

g
N

),(
1

)(
2








  tbu

c
tq

t

m

x

p

t

p

c 











 )(1
2

2

2

2

2



 ),(),()()(
1

2
tbutbuutmtQ

c
s

 







),(),(),(    tbutbutbu

)1)(()(  jebUbU  

,0)0( P 0)( lU

)](cos[)sin( blkBkbA 

)1)(cos()](sin[  jekbAblkB 

 jeblkkb  1)](tan[)tan(

ni

i
Ni

f


 )Re(


ni

i
Ni

g


 )Im(










l

ml

m

mm
m dxx

t

q

dx
dt

d

0

0

2

2

2

2 )(
1










)(),(
1

)()(),(
2

bxtbu
c

bxtQtxq 


  





 























1 1

)'()(
m m

mmmm xx
xx

p

t

u








1

)()(),(
m

mm xttxp 



   

 

 
(a) ω1τ/(2π)=0.0 

 
(b) ω1τ/(2π)=1.2 

 
(c) ω1τ/(2π)=1.8 

 
(d) ω1τ/(2π)=2.0 

Fig. 3  Variation of disturbance in combustion dynamic 

pressure with β of 0.2 and different values of ω1τ/(2π) 

shown in Fig. 2. 

 

          

 
 

Fig. 4  Combustor modeled as a 1-D duct. (a) 1-D duct 

model and (b) 1-D duct model with a side branch 

description. 

 
Culick suggested a simplification of Eq. (15) by keeping 

only the fundamental mode (m=1) in evaluating Eq. (16-

a) [1]. Figure 3 shows η1 and dη1/dt obtained as such, 

which are the time histories of combustion dynamic 

pressure with several different values of τ while β is 

fixed at 0.2. Figure 3(a), which is for τ=0, shows the 

disturbance remains constant. In Figs. 3(b) where gN is 

negative, the disturbance decays. In Figs. 3(c) and (d), 

where gN is positive, the disturbance grows, latter case 

growing more slowly. These observations are compatible 

with what we observed in Fig. 2. 

 

 

4. Transfer Matrix Based Method 
 

The transfer matrix method, also known as four pole 

method, is an ideal method to analyze a combustor 

system composed of sections of various different cross-

sectional area and side-branches [6]. In this work, we 

developed a new approach to apply the transfer matrix 

method more easily to combustion system analysis. The 

approach rearranges the system model to make the heat 

source point the input point of the system by viewing a 

part of the combustion duct as a side-branch. It is shown 

that the method is completely equivalent with the other 

methods as long as they used the same heat source model. 

Figure 4 shows the 1-D system in Fig. 1 represented as 

a combination of two sub-elements. Figure 4(a) shows a 

typical model and Fig. 4(b) shows the system with the 

left end of the duct described as a side branch. Model in 

Fig. 4(b) enables the volume flow input us due to the heat 

release to be described as the system input. In the system 

shown in Fig. 4(a), the boundary conditions are given as 

 

(17) 

 

It is more convenient to use acoustic mass flow velocity 

than the particle velocity in formulation of the transfer 

matrix of the combustion duct because the cross-

sectional area and temperature change throughout the 

system. For the i
th

 section of the duct, we define 
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(18) 

 

where, Vi and Ui are harmonic amplitudes of the mass 

flow velocity and the particle velocity, ρi and Si are the 

density and cross-sectional area of the i
th

 section of the 

duct. 

The transfer matrix equation of the system shown in 

Fig. 4(b) is given by [4,5] 
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where, A2, B2, C2 and D2 are the four-pole parameters of 

the duct 2 of length l-b in Fig. 4(a) and Zs is the 

impedance of the side branch defined as 

 

(20) 

 

From Eq. (19), 

 

(21) 

 

(22) 

 

 

Therefore,  

 

(23) 

 

 

and, 

 

 

(24-a) 

 

 

In terms of particle velocities, 

 

(24-b) 

  

 

Because         Q (see Eq. (5)), 

 

 

(25) 

 

 

where                      is the transfer function  

 

between Us and Q. The transfer function H2 between Q 

and Us is 

 

                                          (26) 

 

 

Figure 5 shows the description of the combustion 

system as a feedback loop. Notice that -1 is multiplied to 

Q to make a negative feedback loop to adopt the standard 

convention in control theory. From the figure, the open 

loop transfer function K is obtained as  

 

 

(27) 

 

From the four pole equation between the input and 

output points of the side branch, which is  

 

 

(28) 

 

 

 

Therefore,                .  Also with                                  

 

 

 

Eq. (27) becomes 

 

(29) 

 

 

 

 

5. Case Study Results and Discussions 

 
If the system in Fig. 1 has different temperatures in the 

sections before and after the heat source, the 

characteristic equation (Eq. (11)) becomes, 

 

 

(30) 

 

Also, the open loop transfer function K becomes, 

 

 

(31) 

 

 

 

 

 
 

Fig. 5  Feedback loop description of the combustion 

process. 
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Table 1  Simulation parameters of a case studied [3]. 

Parameter 
Value 

(1)1) (2)1) 

Diameter, m 0.13335 0.13335 

Length (b & (ℓ-b)), m 0.01270 1.39700 

Cross-sectional area, m2 0.013966 0.013966 

Temperature, K 553.3 1811.1 

Pressure, MPa 2.020 2.020 

Density, kg/m3 13.21 3.89 

Ratio of specific heats 1.4 1.3 

Mol. wt., kg/kg-mole 29.0 29.0 

Sonic vel., m/s 462.7 821.6 

Mean flow vel., m/s 7.64 25.93 

Mach no. 0.01651 0.03156 

Mass flow rate, kg/s 1.409 1.409 
1) In Fig. 4(a) 

 

In general, a gas turbine combustion system can be 

modeled as a network of fuel injector including air and 

fuel supplies, flame, combustion chamber, exhaust 

nozzle, etc [3]. Table 1 lists the parameters provided used 

for simulations. All parameters, both geometrical and 

operational, are selected to be representative of gas 

turbine combustors which are summarized in Table 1. 

 

 

   
(a) 1st undamped mode 

   
(b) 2nd undamped mode 

Fig. 6  Variation of instability frequency and growth 

rate with τ for the root of Eq. (30) near the first two 

undamped frequencies among ten studied. 

 

Table 2  Combustion instability with traditional method. 

fN
1,2) ω, Hz 

A stable case 

(gN<0)2) 

An unstable case 

(gN>0)2) 

ω1τ/(2π) τ , ms ω1τ/(2π) τ , ms 

1.7468 143.24 0.15 1.83 0.5 6.09 

1.7470 429.76 0.1 0.41 0.5 2.03 

1.0482 429.76 - - - - 

1.2480 716.35 0.1 0.17 0.7 1.22 

1.3592 1003.09 0.1 0.14 0.7 0.95 

1.1121 1003.11 - - - - 

1.2102 1290.07 - - - - 

1.0488 1290.02 0.1 0.08 0.85 0.69 

1.1313 1578.16 - - - - 

1.0122 1578.02 0.1 0.06 0.9 0.58 
1) In the first case of gN=0 
2) For β=0.2 

 

Figure 6 shows a part of the simulation result. The 

figure shows that the oscillation grows or decays 

depending on the fixed heat input, i.e., β and the time 

delay τ near the 1
st
 two undamped frequencies. For τ =0 

(not reported here) the rate of heat input only shifts the 

frequency of oscillation. 

Table 2 summarizes the simulation results which 

include those shown in Fig. 6. The data in the first two 

columns were obtained for the undamped case, gN =0. 

The next two columns show values of ω1τ/(2π) and τ for 

the stable case, i.e., gN <0. The last two columns are for 

the unstable cases. 

Once the combustion process is represented by a 

control system, well established tools such as the Nyquist 

plot, Bode plot or root-locus method can be used for 

stability analysis or design of the system. Most control 

systems behave in a pattern such that they become 

unstable if the gain increases over a certain value. For 

these systems, in addition to determining their absolute 

stability, the Nyquist plot provides qualitative 

information as to the degree of stability. If the system is 

stable, the corresponding Nyquist curve does not encircle 

the (-1,0) point. If the system is marginally stable, the 

curve passes through the point. If the system is unstable, 

the plot encircles the point. For a stable system, the 

closer the Nyquist curve approaches the (-1,0) point, the 

less stable the system is [7]. 

Figure 7 shows the Bode and Nyqusit plots obtained 

for the case we studied. The first one is the Bode plot of 

the open loop transfer function, which can provide the 

resonant frequencies of the model combustion system. 

Peak amplitudes in Fig. 7(a) correspond to the resonant 

frequencies of the system, which are listed in Table 3. As 

seen in the table, predicted resonant frequencies with this 

method agree well with those with the traditional system 

resonant frequency approach. 

Next, Nyquist plots are used to see whether the system 

becomes stable or not at the stable conditions. Figure 7(b) 

is a Nyquist plot of an unstable case of the 1
st
 mode (ω 

=143.24 Hz and τ=6.09 ms) which encircles (-1,0) point,  
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(a) Bode plot 

          
(b) Nyquist plot of an unstable case at the 1st mode 

 
(c) Nyquist plot of a stable case at the 1st mode 

Fig. 7  The open loop transfer function K of a model 

combustion system studied. 

 

Table 3  Comparison of resonant frequencies with the 

two methods. 

 

 

implying that the system is unstable. The case in Fig. 7(c) 

does not encircle the (-1,0) point; therefore stable. Table 

3 compares six resonant frequencies, which shows the 

equivalence of the methods. 

 

 

6. Conclusions 

 
Two existing combustion instability analysis methods, 

the method based on the assumed modeshape method 

and Galerkin’s method, have been reviewed. A new 

method based on the transfer matrix method was 

developed in this work. The new approach employs a 

side-branch description, which enables to model the heat 

source point as the input point of the system. A system 

model that describes the combustion process as a feed-

back control system can be obtained by the transfer 

matrix method. The approach enables exploiting all the 

advantages of the transfer matrix method and techniques 

used in the classic control theory. Transfer matrix method 

makes it possible to formulate the model of a combustion 

system of any complexity as easily as the simplest 

system. 
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