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Abstract
On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of

the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple
testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To
do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling
FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding
procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA
expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure
is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative
one.
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1. Introduction

The occurrence of high-dimensional data in a various field has increased and sustained interest in
Statistics in recent years. Statistical analysis of such high-dimensional data often requires the knowl-
edge of covariance or correlation matrix, whose dimension p be sometimes much larger than the
sample size n. There are various examples including microarray analysis (Jaeger et al., 2003; Shed-
den and Taylor, 2005), financial risk management (Fan et al., 2008), and brain functional connectivity
analysis (Shaw et al., 2006). All these applications include estimating the covariance or correlation
matrix of one variable vector, but a lot of researchers are more interested in finding the association
between two mutually exclusive sets of variables. In the correlation matrix, the off-diagonal subma-
trix RXY is called cross correlation matrix and its estimation is highly involved in data integration
problems, especially in the context of multi-omics studies. A typical example is measuring the same
gene at two different molecular levels (e.g., DNA and RNA, or RNA and protein). Using expression
data for non-coding RNAs such as microRNAs, to reveal the degree of post-transcriptional regulation
is another common scenario (Cheng et al., 2005).

In this paper, we consider the estimation of cross correlation matrix with the sparsity assumption
under which most entries are zero (Bickel and Levina, 2008; Cai and Liu, 2011; Wang and Fan, 2017).
The problem of estimation of a sparse cross correlation matrix can be devided into two parts: (i) the
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estimation of the elemants of the cross correlation matrix and (ii) the estimation of the sparse structure
of the cross correlation matrix. In general, the estimation of the elements of the cross correlation
matrix is based on the sample correlation. Thus, we accept this convention and focus on the estimation
of the sparse structure.

Aimed for detecting significant correlations between variables, large-scale multiple testing for
correlation structure is an important area in Statistics and a widely used methodology in analysis of
high-dimensional data. Liu (2013) considers multiple testing for partial correlations under a Gaussian
graphical model. Cai and Liu (2016) propose a method for simultaneous testing of correlations. Xia
et al. (2015) and Yu et al. (2018) propose a method for differential network analysis. There are a wide
range of applications including gene expression (Dubois et al., 2010), spatial epidemiology (Elliott
and Wartenberg, 2004), and brain imaging (Bennett et al., 2009). In those studies, the null hypotheses
are usually

H0 jk : ρ jk = 0, (1.1)

where ρ jk is the correlation coefficient between variables X j and Yk for 1 6 j 6 p, and 1 6 k 6 q.
With thousands or even millions of tests to perform simultaneously, it becomes challenging to control
the overall Type I error rate while maintaining the desired power due to complicated dependence
structures. In high-dimensional studies, controlling the false discovery rate (FDR), the proportion of
falsely rejected hypotheses among all rejected hypotheses, becomes a common goal.

Methods of controlling FDR has been developed by many researchers since it was first introduced
by Benjamini and Hochberg (1995). Under the assumption that test statistics are independent, the
BH step-up procedure (Benjamini and Hochberg, 1995) controls FDR by thresholding the p-values
of each individual test. Storey (2002) introduces the q-value which estimates FDR for a given cutoff

value. Efron (2004) proposes an empirical Bayes method to examine the local false discovery rate. On
the other hand, There are some multiple testing adjustment methods dealing with certain dependence
assumptions including Benjamini and Yekutieli (2001) and Fan et al. (2012).

In this paper, we propose a new procedure to estimate the sparse structure of the cross correlation
matrix via a multiple testing procedure. We start from the sample correlation coefficient r jk and suggest
to threshold r jks universally at the level t as

ρ̂ jk = r jk · I
(∣∣∣r jk

∣∣∣ ≥ t
)
, j = 1, 2, . . . , p, k = 1, 2, . . . , q, (1.2)

where I
(
A
)

is an indicator function for the event A. For the decision of thresholding level t, we
consider the multiple testing problem (1.1) with the test statistic z jk, the Fisher’s z-transformation of
r jk for an individual null hypothesis H0 jk. The level t is set to control the local false discovery rate
at a prespecified level. To evaluate and compare the performance, we apply both new procedure and
an alternative one by Cai and Liu (2016) to paired proteomic data (X) and transcriptomic data (Y) in
TCGA breast cancer cohort. Then, we identify the significantly correlated pairs for both procedures
and show that the estimated cross correlation matrix by new procedure has a higher coverage rate of
known transcription regulatory networks catalogued in the cancer cell biology literature.

The rest of the paper is organized as follows. In Section 2, we review the adaptive thresholding
procedure developed by Cai and Liu (2016) and propose new procedure to estimate the sparse structure
of high-dimensional cross correlation matrix. In Section 3, a comparison between the methods, new
procedure and that of Cai and Liu (2016), using breast cancer data is evaluated. Finally, we conclude
the paper with a brief summary in Section 4.
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2. Methods

To begin with, let present the problem with data structure we are interested in this paper and review
the existing method proposed by Cai and Liu (2016). Lastly, we describe the new procedure for
estimating the sparse structure of cross correlation matrix.

2.1. Cross correlation matrix

Suppose we observed a vector pair (Xi,Yi) for subject i = 1, . . . , n, where Xi = (Xi1, Xi2, . . . , Xip)>

and Yi = (Yi1,Yi2, . . . ,Yiq)> are two random vectors. We assume that the data Zi = (X>i ,Y
>
i )> for

each subject follows the multivariate normal distribution with mean vector and correlation matrix as

µ =

(
µX

µY

)
, R =

(
RXX RXY

RYX RYY

)
,

where µX and µY are mean vectors with length p and q and RXX , RXY and RYY are submatrices of
covariance matrix R with size p × p, p × q and q × q, respectively. Further, we have data X ∈ Rn×p

and Y ∈ Rn×q as follows

X =


X>1
X>2
...

X>n

 =


X11 X12 · · · X1p

X21 X22 · · · X2p
...

...
. . .

...
Xn1 Xn2 · · · Xnp


and

Y =


Y>1
Y>2
...

Y>n

 =


Y11 Y12 · · · Y1q

Y21 Y22 · · · Y2q
...

...
. . .

...
Yn1 Yn2 · · · Ynq

 .
The estimator of sparse cross correlation matrix RXY is the thresholding estimator given in (1.2).

To decide the thresholding level t, we are interested in the simultaneous correlation tests between
variables X j and Yk for 1 6 j 6 p and 1 6 k 6 q. That is, we will apply multiple testing procedure
to find the non-zero correlation pairs while controlling the FDR at a given level α.

2.2. Adaptive thresholding procedure

Cai and Liu (2011, 2016) propose an adaptive thresholding method for sparse cross correlation matrix
estimation and a large-scale multiple testing procedure for correlations in one sample case. With the
two random vectors X and Y with dimension p and q respectively, the procedure simultaneously tests
the hypotheses

H0 jk : σ jk = 0 versus H1 jk : σ jk , 0,

which is equivalent to the hypothesis (1.1) for j = 1, 2, . . . , p and k = 1, 2, . . . , q. They suggest using
the test statistic

T jk =

∑n
i=1

(
Xi j − X̄ j

) (
Yik − Ȳk

)
√

nθ̂ jk

,
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where X̄ j = 1/n
∑n

i=1 Xi j, Ȳk = 1/n
∑n

i=1 Yik,

θ̂ jk =
1
n

n∑
i=1

[(
Xi j − X̄ j

) (
Yik − Ȳk

)
− σ̂ jk

]2

and

σ̂ jk =
1
n

n∑
i=1

(
Xi j − X̄ j

) (
Yik − Ȳk

)
.

With a prespecified level 0 < α < 1, let t be the threshold level which is defined as

t̂c = inf

0 6 t 6 bp,q :
G (t) pq

max
{∑p

j=1
∑q

k=1 I
(∣∣∣T jk

∣∣∣ > t
)
, 1

} 6 α

 , (2.1)

where bp,q =
√

4 log(p + q) − 2 log log(p + q) and G(t) = 2 − 2Φ(t) when the sample size is large
and defines a sparse structure of the cross correlation matrix. If the sample size is small, the null
distribution of T jk, or G(t), can be approximated by bootstrap method (refer in (Cai and Liu, 2016)).
If t̂c does not exist, they set t̂c =

√
2 log(pq). Then the null hypothesis H0 jk is rejected whenever

|T jk | > t̂c, equivalently,

∣∣∣r jk

∣∣∣ ≥
√
θ̂ jk√

nσ̂ j jσ̂kk
· t̂c,

where r jk is the sample correlation coefficient and we have a cross correlation matrix estimator R̂c
XY

with entries

ρ̂c
jk = r jk · I

∣∣∣r jk

∣∣∣ ≥
√
θ̂ jk√

nσ̂ j jσ̂kk
· t̂c

 , j = 1, 2, . . . , p, k = 1, 2, . . . , q. (2.2)

2.3. New procedure

In this section, we propose a large-scale multiple testing procedure for estimating sparse cross corre-
lation matrix. We first construct a test statistic for testing no correlation between each pair as in (1.1).
The test statistic has asymptotically standard normal distribution under the null hypothesis H0 jk. Then
we use the local FDR procedure to control the overall FDR at the prespecified level α.

The traditional statistic for association is the sample correlation coefficient, r jk between variables
X j and Yk, which is defined as

r jk =

∑n
i=1

(
Xi j − X̄ j

) (
Yik − Ȳk

)
√∑n

i=1

(
Xi j − X̄ j

)2
√∑n

i=1

(
Yik − Ȳk

)2

for j = 1, 2, . . . , p and k = 1, 2, . . . , q.
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Since the variances of sample correlation coefficient are unstable, we use the variance stabilization
method, Fisher’s z-transformation which is defined as

F
(
r jk

)
=

1
2

ln
1 + r jk

1 − r jk
.

When data (X>i ,Y
>
i )> follows a multivariate normal distribution, it has been shown that F(r jk) is

approximately distributed by normal distribution with mean ln((1 + ρ jk)/(1 − ρ jk))/2 and standard
deviation 1/

√
n − 3 with sample size n. Under the null hypothesis, we obtain a standardized normal

test statistic

z jk =
√

n − 3F
(
r jk

)
→ N (0, 1) .

We then apply local FDR procedure to these test statistics z jk for 1 ≤ j ≤ p and 1 ≤ k ≤ q.
Among various FDR procedures, we consider the local FDR proposed by Efron (2004) which is a

Bayes version of Benjamini and Hochberg (1995) procedure focusing on density rather than tail areas.
The local FDR at the observation z jk is defined as

lfdr
(
z jk

)
=

π0 f0
(
z jk

)
π0 f0

(
z jk

)
+ π1 f1

(
z jk

) ,
where f0 and f1 are null and alternative densities with corresponding prior probabilities π0 and π1(=
1 − π0). Then, the null hypothesis H0 jk is rejected whenever lfdr(z jk) ≤ α so that we control FDR at
the prespecified level α. In view of thresholding estimator (1.2), the thresholding level t is estimated
as

t̂lfdr = inf
r jk

{∣∣∣r jk

∣∣∣ ∣∣∣ lfdr
(
z jk

)
≤ α, z jk =

√
n − 3F

(
r jk

)}
,

which defines a sparse structure and so gives a cross correlation matrix estimator R̂lfdr
XY with elements

ρ̂lfdr
jk = r jk · I

(∣∣∣r jk

∣∣∣ ≥ t̂lfdr
)
, j = 1, 2, . . . , p, k = 1, 2, . . . , q. (2.3)

In this paper, we estimate local FDR by the R package loc f dr by Efron (2004).

3. Data example

In this section, we apply the proposed method to integrative analysis of the protein expression data
(X) and the mRNA expression data (Y) in TCGA breast cancer cohort, with group information rep-
resenting the co-regulation of gene expression by complexes of transcription factor proteins. In total,
76 subjects have both transcriptomics and proteomics data as distributed through the data portals of
TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC). In invasive ductal carcinomas,
the gene expression variation across patients is well known to be determined by the expression level
of the estrogen receptor (ER) protein in the tumor (Rosato et al., 2018), which in turn acts as a nu-
clear transcription factor and drives gene expression program for cell proliferation. As a benchmark
analysis, we aim to verify that the non-zero elements of the cross covariance matrix between the tran-
scription factor and co-activator proteins (denoted by TFA hereafter) and the mRNA expression levels
of their target genes are the most pronounced variation in the data.



660 Yin Cao, Kwangok Seo, Soohyun Ahn, Johan Lim

 

 

Fr
eq

ue
nc

y

−5 0 5 10

0
50

00
0

10
00

00
15

00
00

CME: delta: 0.06 sigma: 1.237 p0: 0.973

MLE: delta: 0.053 sigma: 1.249 p0: 0.98

Figure 1: Histogram of z-values for the protein and mRNA expression pairs data, N = 3,721,230. Green curve is
estimate of mixture density f (z). Blue curve is estimate of null density π0 f0(z) with delta, sigma, and p0 which
are the estimates of mean, standard deviation, and mixing probability of null distribution f0(z) for each method,

MLE and CME.

We capitalize on the fact that the TFAs are assembled into protein complexes while in action,
and thus hypothesize that utilizing the protein-protein interaction will allow us to first identify the
TFA groups associated with large variation in the proteomics data, and their target gene expression
levels should be consistently reflected in the transcriptomics data. To this end, we collected bona fide
protein-protein interaction data from credible sources (Razick et al., 2008; Huttin et al., 2015) for the
human TFA proteins (1,195 proteins), which have been known to regulate as many as 3,114 target
genes according to the TF and regulatory element databases such as ENCODE, and TTRUST (Han et
al., 2015), ITFP (Zheng et al., 2008), TRED (Zhao et al., 2005).

Figure 1 shows the histogram of the 1,195 × 3,114 = 3,721,230 z-values. The green solid line is
the fitted mixture density f (z). The curve f (z) emphasizes the central peak around z = 0, showing that
a large proportion of (TFA, mRNA) pairs are not correlated. The blue dashed line is the null density
π0 f0(z) estimated by maximum likelihood (MLE). Both MLE and central matching method (CME)
estimate the empirical null distribution similarly. The newly proposed procedure of estimating the
cross correlation matrix uses local FDR (lfdr) cutoff value 0.1. Using the empirical null distribution
estimation by MLE, more than 99.9% of the entries are penalized to zero by (1.2), resulting in a
sparse cross correlation matrix estimation. A total of 3,860 (TFA, mRNA) pairs (0.1%) have non-zero
correlation, with all the pairs having strong correlation values larger than |0.5|.

Further, we estimate the sparse cross correlation matrix using the adaptive thresholding procedure
proposed by Cai and Liu (2016). We also control the FDR at the level α = 0.1 by (2.2) and a
total of 57,941 pairs (1.56%) are found with non-zero correlation. Among the non-zero values, only
10.6% (6,138 pairs) have strong correlation values larger than |0.5|, indicating the problem of under-
penalization of cross correlation matrix One reason for this would be the FDR in Cai and Liu (2016)
is that by (Benjamini and Hochberg, 1995), not local FDR by Efron (2004), and the latter is more
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Figure 2: Venn diagram of non-zero correlation pairs detected by new procedure (New) and adaptive thresholding
procedure (Cai and Liu). n1 denotes the number of non-zero correlation pairs in both procedure, n2 and n3 denote
the number of unique non-zero correlation pairs in each procedure; m1,m2 and m3 are the number of benchmark

pairs in the corresponding ni pairs for i = 1, 2, 3.

Table 1: Estimation of cross correlation matrix at the different FDR level α by new procedure (New) and
adaptive thresholding procedure (Cai and Liu)

Method α = 0.1 α = 0.05 α = 0.01
New Cai and Liu New Cai and Liu New Cai and Liu

Ture discovery rate 20.96% 5.17% 25.35% 8.46% 28.93% 17.42%
False non-discovery rate 3.22% 3.21% 3.23% 3.20% 3.24% 3.22%

True discovery rate is the proportion of benchmarked pairs among the non-zero correlation pairs detected by each method.
False non-discovery rate is the proportion of zero correlation pairs thresholded by each method among benchmark pairs.

conservative than the former which is shown in Appendix.

Further, to evaluate the accuracy of procedures, we benchmark (TFA, mRNA) pairs with non-zero
correlation against the known transcription regulatory networks 101,272 pairs and compare the cov-
erage rates. In Figure 2, the Venn diagram shows the number of non-zero correlation (TFA, mRNA)
pairs with and without benchmark for both procedures. The TF-target pairs are benchmark pairs used.
For the new procedure, a total of 3,860 (TFA, mRNA) pairs have non-zero correlation and among
these 809 pairs are known as TF-target pairs. On the other hand, the adaptive thresholding procedure
by Cai and Liu (2016) produces a substantial amount of non-zero correlation pairs (57,941) compared
to the pairs found by new procedure (3,860). However, the proportion of benchmarked pairs among
all non-zero correlation pairs (m1 + m2/n1 + n2 = 20.96%) by new procedure is substantially higher
than that (m1 + m3/n1 + n3 = 5.17%) by adaptive thresholding procedure. Moreover, the proportion
of unique non-zero correlation pairs under benchmark among all unique non-zero correlation pairs
(m2/n2 = 3.4%,m3/n3 = 4.1%) are nearly the same and both methods show almost the same false
negative rate of 3.2%. These findings suggest that the new procedure is more efficient in finding the
significantly correlated pairs or estimating the sparse structure of cross correlation matrix than the
adaptive thresholding procedure. Table 1 supports this result by showing the similar pattern at the
different FDR level α.
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4. Conclusion

In this paper, we propose a new method to estimate the sparsity structure of cross correlation matrix
RXY of two random vectors X and Y based on a multiple testing procedure. The new method rewrites
the problem as a multiple testing problem and thresholds the traditional sample correlations by con-
trolling local FDR and so FDR at a predetermined level α. In doing so, we adapt the Efron’s local
false discovery rate procedure (Efron, 2004) to test the individual hypotheses on ρ jks simultaneously.
Lastly, applying the method to breast cancer data in TCGA, we show the procedure more efficiently
estimate and define the sparse structure of high-dimensional cross correlation matrix than adaptive
thresholding procedure by Cai and Liu (2016). As a future work, with the recent advances in multiple
testing literature, we may be able to refine the procedure.

Appendix:

We claim that local FDR by (Efron, 2004) (lfdr(y)) is more conservative than the FDR in Cai and Liu
(2016) by showing ‘lfdr < α’ approximately gurantees ‘FDR < α’. Here, the FDR in Cai and Liu
(2016) is the expected number of false discovery proportion in Benjamini and Hochberg (1995).

Let us start with a few notations to be used in this section. Let N be the number of hypotheses,
R be the rejection region, FDR(R) be the FDR by Benjamini and Hochberg (1995). In addition, let
Fdr(R) be the Bayesian FDR defined as

Fdr (R) =
π0F0 (R)

F (R)
,

where π0 is the proportion of the null hypotheses among N total hypotheses, F0(R) and F1(R) are the
probabilities of the rejection R under the null and alternative hypothesis, respectively, and F(R) =

π0F0(R) + (1 − π0)F1(R). The local FDR is defined as

lfdr (z) =
π0 f0 (z)

f (z)
=

π0 f0 (z)
π0 f0 (z) + (1 − π0) f1 (z)

, (A.1)

where f0(z) and f1(z) are probability distribution functions of z under the null and alternative hypoth-
esis as we define earlier.

Before proving the claim, we recall two results from Efron and Tibshirani (2002), the averaging
theorem and the conservative bias theorem. The averaging theorem tells that

E f

(
lfdr(z)

∣∣∣z ∈ R) = Fdr (R) (A.2)

and the conservative bias theorem is that

FDR (R) ≤ E
(
F̂dr (R)

)
, (A.3)

where F̂dr(R) is the empirical estimate of the Baysian FDR that is

F̂dr (R) =
π0F0 (R)

F̂ (R)
with F̂ (R) =

# (zi ∈ R)
N

.

Now, let us show our main claim. We set the rejection region R as

R =
{
z
∣∣∣ lfdr(z) ≤ α

}
.
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Suppose we for a moment assume E
(
F̂dr(R)

)
is close to Fdr(R). Then,

FDR (R) ≤ E
(
F̂dr(R)

)
(A.4)

≈ Fdr (R) ≤ α, (A.5)

where (A.4) is from the conservative bias theorem (A.3) and (A.5) is from the averaging theorem
(A.2). Thus, this completes the proof of the claim.

Finally, let us discuss the assumption that ‘E
(
F̂dr(R)

)
is close to Fdr(R)’. Suppose Zis are inde-

pendently from F(z) and F(R) > 0, and thus F̂(R) > 0 almost surely. Recall that F̂(R) = #
{
Zi ∈ R

}/
N

and W ≡ #
{
Zi ∈ R

}
follows the binomial distribution B

(
N, F(R)

)
. Therefore, the law of large numbers

and bounded convergence theorem shows that F̂dr(R) converges to Fdr(R) almost surely, and thus
E
(
F̂dr(R)

)
should be close to Fdr(R), when N is large enough.
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