• Title/Summary/Keyword: mating pheromone signal

Search Result 6, Processing Time 0.024 seconds

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.

Genes involved in mating processes of saccharomyces cerevisiae (효모의 접합과정에 관여하는 유전자의 연구)

  • 장광엽;박문국;정봉우
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.210-215
    • /
    • 1989
  • In order to elucidate and characterize the signal transduction pathway(s) whereby yeast cells respond to mating pheromone, we have isolated mutants which are able to conjugate in the absence of the alpha-factor receptor. Sixty-one suppressors of a ste2-deletion mutation which also confer a ts conditional "start" arrest phenotypw have been subjected to genetic analysis. The mutants could be assigned to three complementation groups designated CDC70, CDC72 and CDC73, which are unlinked to each other as well as to the previously identified start genes. Quantitation of mating ability of the cdc70, cdc72 and cdc73 mutations in a ste2-deletion background gives levels ranging from 0.1% to 0.3% of wild type, depending on the allele and the gene. The results indicate that the signals from mating pheromone might be mediated by the CDC70, CDC72 and CDC73 products. products.

  • PDF

Isolation and Characterization of the Mutants in the Genes Involved in Mating Pheromone Signalling (효모의 mating pheromone 신호전달과정에 관여하는 유전자의 돌연변이 분리 및 분석)

  • Kim, Ji-Hye;Kim, Hwan-Gyu;Jahng, Kwang-Yeop
    • The Korean Journal of Mycology
    • /
    • v.19 no.4
    • /
    • pp.266-275
    • /
    • 1991
  • The gene CDC70 encoding the${\alpha}-subunit$ of G protein has been known to be a component involved in mating pheromone signalling in the yeast, Saccharomyces cerevisiae. To isolate mutations of the genes involved in the signal transduction, Saccharomyces cerevisiae the strain bearing the cdc70-5 mutation was mutagenized to be forced to recover the ability of colony-formation at restrictive temperature, which means the new mutation can suppress the temperature sensitivity of the cdc70-5 phenotypes. Among these suppressors, $sir^-$ and $mat{\alpha}2^{-}$ mutations are excluded because of no relationship to signal transducer. And the selected suppressors were analyzed for the linkage relationships by the tetrad analysis. Out of fifteen suppressors isolated, twelve were classified into four linkage groups, designated as sga1, sga2, sga3, sga4 by the tetrad analysis. The other three genes were determined for the linkage.

  • PDF

이담자균 효모 Rhodosporidium toruloides에서 Rhodotorucine A에 의한 막단백질 인산화의 저해와 Trigger Peptidase의 관련성

  • 정영기;이태호;류병호
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.641-646
    • /
    • 1996
  • [$\gamma$-$^{32}$P]ATP was used to test phosphorylation of membrane proteins of mating type a cells of heterobasidiomycetous yeast Rhodosporidium toruloides separated by non-denaturing electrophoresis. The phosphoprotein was observed in the membrane proteins. The phosphorylation was inhibited by the pheromone rhodotorucine A (Rh. A) secreted by mating type A of the yeast. Rh. A didn't inhibit the phosphorylation in the presence of a trigger peptidase (TPase) inhibitor, antipain. Partially digested Rh. A by trypsin maintained the phosphorylation inhibitory activity. These results show that TPase activity plays an important role in the transduction of pheromone signal in the yeast.

  • PDF

Relation of $\Ca^{2+}$-ATPase and trigger peptidase(TPase) that are Membrane Proteins in a Differentiation Process on Heterobasidiomycerous Yeast (이담자 효모균의 성분화과정에서 막단백질 중 $\Ca^{2+}$-ATPase와 trigger peptidase(TPase)의 상호관계)

  • 정영기;이태호;정경태
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • We have studied the relation between Ca$^{2+}$-ATPase and trigger peptidase(TPase) which are membeane protein well known as their significant role for signal transduction of mating pheromone in heterobasidiomycetous yeast. Rhodosporidium toruloides. We found out that there were Ca $^{2+}$-ATPase and TPase together in isolated calmodulim binding protein(CBP), usion calmodulin affinity column chromatography after solubilization of mation type a cell membrane protein, and that the dependence of enzyme activity of both the enzymes on Ca$^{2+}$, phospholipid and nonionic detergent are similar. However, Ca$^{2+}$-ATPase hed quite absolute dependence on calmodulin and, on the other hand, TPase didn't have any dependence. Judging from the fact that there are both enzymes in CBP which the dependence of calmodulin are quite different, we found out that both enzymes were made to their compound and existed in mating type a cell membrane.

  • PDF

Molecular Genetics of Emericella nidulans Sexual Development

  • Han, Kap-Hoon
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.171-182
    • /
    • 2009
  • Many aspergilli that belongs to ascomycetes have sexuality. In a homothallic or self-fertile fungus, a number of fruiting bodies or cleistothecia are formed in a thallus grown from a single haploid conidia or ascospores. Genome-sequencing project revealed that two mating genes (MAT) encoding the regulatory proteins that are necessary for controlling partner recognition in heterothallic fungi were conserved in most aspergilli. The MAT gene products in some self-fertile species were not required for recognition of mating partner at pheromone-signaling stage but required at later stages of sexual development. Various environmental factors such as nutritional status, culture conditions and several stresses, influence the decision or progression of sexual reproduction. A large number of genes are expected to be involved in sexual development of Emericella nidulans (anamorph: Aspergillus nidulans), a genetic and biological model organism in aspergilli. The sexual development process can be grouped into several development stages, including the decision of sexual reproductive cycle, mating process, growth of fruiting body, karyogamy followed by meiosis, and sporulation process. Complicated regulatory networks, such as signal transduction pathways and gene expression controls, may work in each stage and stage-to-stage linkages. In this review, the components joining in the regulatory pathways of sexual development, although they constitute only a small part of the whole regulatory networks, are briefly mentioned. Some of them control sexual development positively and some do negatively. Regarding the difficulties for studying sexual differentiation compare to asexual one, recent progresses in molecular genetics of E. nidulans enlarge the boundaries of understanding sexual development in the non-fertile species as well as in fertile fungi.