• Title/Summary/Keyword: mathematics-related attitude

Search Result 47, Processing Time 0.025 seconds

Effect of the Integrated STEM Project Learning Themed 'Lighting of Quantum Dot Solution' on Science High-School Small-Group Students' Problem Solving and Scientific Attitude ('양자점 용액의 발광'을 주제로 한 융합형 STEM 프로젝트 학습이 과학고등학교 소집단 학생들의 문제해결력과 과학적 태도에 미치는 효과)

  • Yi, Seung-Woo;Kim, Youngmin
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1356-1363
    • /
    • 2018
  • The purpose of this study was to investigate science high-school students' creativity and scientific attitude when an integrated science, technology, engineering and mathematics (STEM) project themed 'lighting of quantum dot solution' was applied to them. The subjects were a one team composed of 3 students in the 11th grade desiring to participate in the Korea Science Exhibition. They began with a scientific inquiry related to the physical properties of the QD solution and then gradually showed the process of expansion of their ideas into the integration of engineering, technology, and mathematics. Also, during the process, they showed problem solving ability and scientific attitudes, such as cooperation, endurance, and satisfaction of accomplishment.

A Design and Effect of STEAM PBL based on the History of Mathematics (수학사를 활용한 융합적 프로젝트기반학습(STEAM PBL)의 설계 및 효과 분석)

  • Lee, Minhee;Rim, Haemee
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.159-177
    • /
    • 2013
  • This study is a case study of STEAM education. We have developed teaching and learning materials, suggested teaching method, and analysed the result for exploring the potential and effect of STEAM. The content of this study is based on the history of mathematics. Science (S) is related to the 24 divisions of the year, the height of the sun, the movement of heavenly bodies. Technology (T) is related to the exploration with graphic calculators. Engineering (E) is related to design sundial and research on the design principles. Art (A) is related to literature review about mathematical history, the understanding of the value of the mathematics. Mathematics (M) is related to the trigonometric functions. We have considered that Project-Based Learning is proper teaching and learning for STEAM education, we have designed the STEAM PBL and analysed the results focused on the developing integrative knowledge, mathematical attitude including mathematical value, the competencies of 21 century. The result of this study is as follows. We find that STEAM education activates students' collaboration, communication skills and improves representation and critical thinking skills. Also STEAM education makes positive changes of students' mathematical attitudes including the values of the mathematics.

  • PDF

Future Elementary School Teacher's Carrying Out Mathematics Classes Using Play-Action Programs (예비초등교사를 대상으로 한 '놀이수학' 수업의 실행)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.575-595
    • /
    • 2006
  • In this paper, we investigated the effects of mathematics classes using play-action programs in the course of mathematics education of future elementary school teachers. This study was conducted with 43 junior university students who selected 'Play Mathematics' in 2006. All the participants in this course was divided 11 groups. Play-action mathematics programs was consisted of 12 themes. For example, there was tangram, somacube, hexamino, tessellation, geoboard etc. In the beginning of lessons, we investigated theses themes itself through plays, puzzles, games, and computer programs. And next time, we investigated the relationships between these themes and elementary mathematic textbooks(i.e. mathematical contents). In 14th and 15th lessons, all the groups took a project presentation lessons that included all things about play mathematics in all group categories. And they developed two themes of play mathematics in accordance with grades, contents, levels as course tasks. Through this study, three educational effects induced. First, future elementary school teachers have a deep understanding about play-action mathematics. They are interested in these play themes, and take part in these play mathematics programs of their own accord. And they realize that these play themes are related to elementary mathematics. Second, future elementary school teachers' attitude and mind about mathematical are improved after this course. Third, future elementary school teachers comprehend various instruction methods relating to play mathematics. Therefore, we suggest that future elementary school teachers need to have many opportunity to experience and develop a mathematics classes using play mathematics.

  • PDF

A Study on the Discourses Related to Mathematical Aptitude in High School Students (고등학교 남녀 학생의 수학 능력에 대한 담론 연구)

  • Kwon, Oh-Nam;Park, Kyung-Mee;Im, Hyung;Huh, Ra-Keum
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.351-367
    • /
    • 1999
  • This study aims to study the discourses influencing high school students' concept and attitude toward mathematics, and to examine how gender differences concerning mathematical aptitude are created. This study is based on the results of previous two studies which suggested that mathematical competence differs not only according to gender, region and school year, but also even within the same gender. For this study, 12 students ranking in the top 10% at two co-ed high schools were interviewed to find out 1) what discourses are related to gender and mathematics, 2) in what way these discourses are formulated and gain currency, and 3) how they have affected students in general. Common notions concerning mathematics may be summed up as follows: 1) Most of the students believe that gender difference in mathematical aptitude results because biologically men tend to be strong in mathematics and analytical skills while women tend to have better linguistic ability. This concept can help male students' studying to have a greater learning toward mathematics. 2) A large number of the students believe that male students' studying method is based on comprehension whereas female students' method is based on retention, and hence the former group tends to be better at applying their learning than the latter group. This notion seres to encourage male students and discourage female students from tackling difficult mathematical problems. 3) Many students believe that, although female students may surpass their male counterparts in middle school or the first year of high school, they will eventually fall behind by the 3rd year. Despite research which shows that these common beliefs are not grounded in scientific proof, high-school girls, who may be strong in mathematics, lose self-confidence and feel a sense of crisis. The mechanisms which produce and reinforce such concepts as those mentioned above can be summarized as follows: 1) Regarding the choice of majors and future career paths, parents show different attitudes toward sons and daughters, and this tends to influence high-school girls and hinders them from entering mathematics-related fields. 2) Teachers with value systems based on stereo-typed gender roles affect students a great deal, and give different advice according to gender of their students, for selecting their major fields - for instance, whether to study the natural sciences as opposed to humanities. 3) This study indicates that peer-group behavior, of either support or exclusion, also reinforces the process of internalizing notions of gender difference related to mathematical aptitude. 4) The gender-based notion that men are naturally more inclined to have better mathematical ability has caused male students to choose the natural science subjects and female students to turn to the humanities. The discourses discussed above, propagated in schools and homes, and in the mass media, are continually reinforced along with general gender inequalities in the society at large.

  • PDF

Analysis of characteristics from meta-affect viewpoint on problem-solving activities of mathematically gifted children (수학 영재아의 문제해결 활동에 대한 메타정의적 관점에서의 특성 분석)

  • Do, Joowon;Paik, Suckyoon
    • The Mathematical Education
    • /
    • v.58 no.4
    • /
    • pp.519-530
    • /
    • 2019
  • According to previous studies, meta-affect based on the interaction between cognitive and affective elements in mathematics learning activities maintains a close mechanical relationship with the learner's mathematical ability in a similar way to meta-cognition. In this study, in order to grasp these characteristics phenomenologically, small group problem-solving cases of 5th grade elementary mathematically gifted children were analyzed from a meta-affective perspective. As a result, the two types of problem-solving cases of mathematically gifted children were relatively frequent in the types of meta-affect in which cognitive element related to the cognitive characteristics of mathematically gifted children appeared first. Meta-affects were actively acted as the meta-function of evaluation and attitude types. In the case of successful problem-solving, it was largely biased by the meta-function of evaluation type. In the case of unsuccessful problem-solving, it was largely biased by the meta-function of the monitoring type. It could be seen that the cognitive and affective characteristics of mathematically gifted children appear in problem solving activities through meta-affective activities. In particular, it was found that the affective competence of the problem solver acted on problem-solving activities by meta-affect in the form of emotion or attitude. The meta-affecive characteristics of mathematically gifted children and their working principles will provide implications in terms of emotions and attitudes related to mathematics learning.

The Persuit of Rationality and the Mathematics Education (합리성의 추구와 수학교육)

  • Kang Wan
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.105-116
    • /
    • 1986
  • For any thought and knowledge, its growth and development has close relation with the society where it is developed and grow. As Feuerbach says, the birth of spirit needs an existence of two human beings, i. e. the social background, as well as the birth of body does. But, at the educational viewpoint, the spread and the growth of such a thought or knowledge that influence favorably the development of a society must be also considered. We would discuss the goal and the function of mathematics education in relation with the prosperity of a technological civilization. But, the goal and the function are not unrelated with the spiritual culture which is basis of the technological civilization. Most societies of today can be called open democratic societies or societies which are at least standing such. The concept of rationality in such societies is a methodological principle which completes the democratic society. At the same time, it is asserted as an educational value concept which explains comprehensively the standpoint and the attitude of one who is educated in such a society. Especially, we can considered the cultivation of a mathematical thinking or a logical thinking in the goal of mathematics education as a concept which is included in such an educational value concept. The use of the concept of rationality depends on various viewpoints and criterions. We can analyze the concept of rationality at two aspects, one is the aspect of human behavior and the other is that of human belief or knowledge. Generally speaking, the rationality in human behavior means a problem solving power or a reasoning power as an instrument, i. e. the human economical cast of mind. But, the conceptual condition like this cannot include value concept. On the other hand, the rationality in human knowledge is related with the problem of rationality in human belief. For any statement which represents a certain sort of knowledge, its universal validity cannot be assured. The statements of value judgment which represent the philosophical knowledge cannot but relate to the argument on the rationality in human belief, because their finality do not easily turn out to be true or false. The positive statements in science also relate to the argument on the rationality in human belief, because there are no necessary relations between the proposition which states the all-pervasive rule and the proposition which is induced from the results of observation. Especially, the logical statement in logic or mathematics resolves itself into a question of the rationality in human belief after all, because all the logical proposition have their logical propriety in a certain deductive system which must start from some axioms, and the selection and construction of an axiomatic system cannot but depend on the belief of a man himself. Thus, we can conclude that a question of the rationality in knowledge or belief is a question of the rationality both in the content of belief or knowledge and in the process where one holds his own belief. And the rationality of both the content and the process is namely an deal form of a human ability and attitude in one's rational behavior. Considering the advancement of mathematical knowledge, we can say that mathematics is a good example which reflects such a human rationality, i. e. the human ability and attitude. By this property of mathematics itself, mathematics is deeply rooted as a good. subject which as needed in moulding the ability and attitude of a rational person who contributes to the development of the open democratic society he belongs to. But, it is needed to analyze the practicing and pursuing the rationality especially in mathematics education. Mathematics teacher must aim the rationality of process where the mathematical belief is maintained. In fact, there is no problem in the rationality of content as long the mathematics teacher does not draw mathematical conclusions without bases. But, in the mathematical activities he presents in his class, mathematics teacher must be able to show hem together with what even his own belief on the efficiency and propriety of mathematical activites can be altered and advanced by a new thinking or new experiences.

  • PDF

과학고등학교 학생들의 수학불안감소와 수학성취도 향상을 위한 인지/행동 훈련의 효과

  • 김보경;조성희;이군현
    • Journal of Gifted/Talented Education
    • /
    • v.7 no.1
    • /
    • pp.31-50
    • /
    • 1997
  • 'I'his study investigated students' attitude toward mathematics. and how behavior/cognitive training affects level of math anxietv and level of math achievement. Subjects were all the freshmen attending Taejon Science High School, and they were given Mathematics Attitudes Scale and Attributional Style Questionnaire prior to and post training sessions. Twenty out of 84 freshmen voluntarily participated in nine sessions of training program. Participants were asked to do self-evaluation. Math achievement was measured prior to and post training. and was compared between two groups. Training program utilized behavior/cognitive approach. such as understanding one's feeling through muscle relaxation, breathing and meditation; modifying negative attributional style; imitating effective cognitive strategies for math problem solving, and so on. 'I'he result shows that students' math confidence in general was relatively low out of expectation, a nd they perceived teachers not supporting their math abilities :IS much as expected. On the other hand, students in general had strong math achievelment needs, and considered math utility very high. Sex difference was seen in the attitude toward female math abilities, to result that female students had more positive perception than male students. Female students of 'I'aejon Science High School seem free from conventional idea about female abilities including theirs. Participants' ~attitude change was compared with non-participants. and participants showed statistically significant change in their math confidence, and also in their math achievement. Participants had much higher math confidence and ~achievement than non-participants. And, they showed increased level of perceiving teachers' expectation. more realistic in needs, and more involvement in math. Math achievement was found positively related to math confidence, and participants' math achievement change was explained by their belief in math utility. Not only training program effect hut also participants' voluntary involvement and teacher\ulcorner' support of the program and participation seem to increase their math achievement. Based upon the result of study it was suggested that behavior-/cognitive training program be provided along with academic curricula for gifted students of Korea to help their emotional and psychological development enhance the efficacy of their cognitive learning.

  • PDF

The Relationships Among Parental Attitudes, Parental Expectations, Motivation and Achievement Focusing on Mathematics (부모의 수학에 대한 태도와 기대가 수학 학습 동기와 성취도에 미치는 영향)

  • Rim, Haemee
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.4
    • /
    • pp.701-714
    • /
    • 2016
  • This study examined the structural relationships among parental attitudes and expectations toward mathematics, mathematics motivation and achievement of their child in PISA 2012 of South Korea. Data were analyzed using structural equation modeling(SEM) analysis. The results were as follows: First, parental attitudes toward mathematics had positive effects on parent academic and professional expectations in mathematics. Second, parental expectations also had positive effects on intrinsic motivation, instrumental motivation and math achievement for their child. Third, instrumental motivation had strongest effects on math achievement. The next factors which had effects on math achievement were intrinsic motivation and parental expectations in order. This results shows that the parental awareness of the usefulness and necessity of mathematics will help to increase the interest and value toward mathematics, math achievement and interest of math related carriers of their child.

Analysis of Textbooks on Statistical Problem-Solving Process and Statistical Literacy (통계적 문제해결과정 및 통계적 소양에 관한 <확률과 통계> 교과서 분석)

  • Lee, Jiyeon;Rim, Haemee
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.191-216
    • /
    • 2021
  • This study analyzes how statistical literacy is implemented along with the statistical problem-solving process as described in the Statistical Estimation Unit of the textbook by the 2015 revised mathematics curriculum. The analytical framework was developed from the literature, and consists of 'context', 'variability', 'mathematical and statistical knowledge', 'using of technological instruments', 'critical attitude', and 'communication'. From the perspective of the statistical problem-solving process, the analysis revealed that many tasks equivalent to 'Analyzing Data' but lacked tasks related to 'Interpreting Results' and 'Formulating Questions'. As a result of analyzing the reflection of each element of statistical literacy, 'mathematical and statistical knowledge' was the most common task, but 'critical attitude' and 'using of technological instruments' were rarely dealt with. Based on the results of this textbook analysis, it was intended to provide implications for improving the curriculum and the development of textbooks for the growth of statistical literacy.

An Inquiry on the Understanding Process of Discrete Mathematics using TI-92 Calculator - Matrix and Graph- (TI-92 계산기를 활용한 이산수학의 이해과정 탐구-「행렬과 그래프」단원을 중심으로-)

  • Kang , Yun-Soo;Lee, Bo-Ra
    • Journal of the Korean School Mathematics Society
    • /
    • v.7 no.2
    • /
    • pp.81-97
    • /
    • 2004
  • This paper is a study on the understanding process of「Matrix and Graph」on discrete mathematics using TI-92 calculator. For this purpose, we investigated the understanding process of two middle school students learning the concepts of matrix and graph using TI-92 calculator. In this process, we collected qualitative data using recorder and video camera. Then we categorized these data as follows: students' attitude related to using technology, understanding process of meaning, expression and operation of matrix and graph, mathematical communication, etc. From this, we have the following conclusions: First, students inquired out the meaning and role of matrix by themselves using calculator. We could see that calculator can do the role of good learning partner to them. Second, students realized their own mistakes when they used calculator on the process of learning matrix. So we found that calculator could form the self-leading learning circumstance on learning matrix. Third, calculators reinforce the mathematical communication in learning matrix and graph. That is, calculator could be a good mediator to reinforce mathematical communication between teacher and students, among students on learning matrix and graph.

  • PDF