• Title/Summary/Keyword: mathematical understanding

Search Result 1,048, Processing Time 0.026 seconds

A Study on Abstraction and Understandings in Children's Learning of Surface Area with Mathematical Modeling Perspective (겉넓이 학습을 위한 수학적 모델링에서 나타난 추상화 과정 및 겉넓이 이해에 관한 연구)

  • Hong, Jee-Yun;Kim, Min-Kyeong
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • The purpose of this study was to analyze the progress of children's abstraction and to investigate how elementary students understand through mathematical modeling approach in the sixth grader's learning of surface area. Each small group showed their own level on abstraction in mathematical modeling progress. The participants showed improvements in understanding regarding to surface area context.

  • PDF

Understanding the properties of geometric figures through the linear transformation and its implication for school mathematics (일차변환 관점에서의 도형의 성질 이해 및 학교수학에의 시사점)

  • Hong, Gap-Ju
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.437-445
    • /
    • 2008
  • On the basis of the meaning and general process of geometric proof through transformation concept and understanding the geometric properties of linear transformation, this study showed that the centroid of geometrical figure and certain properties of a parabola and an ellipse in school mathematics can be explained as a conservative properties through linear transformation. From an educational perspective, this is a good example of showing the process of how several existing individual knowledge can be reorganized by a mathematical concept. Considering the fact that mathematical usefulness of linear transformation can be revealed through an invariable and conservation concept, further discussion is necessary on whether the linear transformation map included in the former curriculum have missed its point.

  • PDF

Problem Posing in the Instruction of Proof: Bridging Everyday Lesson and Proof

  • Kim, Hangil
    • Research in Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.255-278
    • /
    • 2021
  • Proof serves a critical role in mathematical practices as well as in fostering student's mathematical understanding. However, the research literature accumulates results that there are not many opportunities available for students to engage with proving-related activities and that students' understanding about proof is not promising. This unpromising state of instruction of proof calls for a novel approach to address the aforementioned issues. This study investigated an instruction of proof to explore a pedagogy to teach how to prove. The teacher utilized the way of problem posing to make proving a routine part of everyday lesson and changed the classroom culture to support student proving. The study identified the teacher's support for student proving, the key pedagogical changes that embraced proving as part of everyday lesson, and what changes the teacher made to cultivate the classroom culture to be better suited for establishing a supportive community for student proving. The results indicate that problem posing has a potential to embrace proof into everyday lesson.

Impact of Hand-Held Technology for Understanding Linear Equations and Graphs

  • Kwon, Oh-Nam
    • Research in Mathematical Education
    • /
    • v.6 no.1
    • /
    • pp.81-96
    • /
    • 2002
  • This article describes a research project that examined the impact of hand-held technology on students' understanding linear equations and graphs in multiple representations. The results indicated that students in the graphing-approach classes were significantly better at the components of interpreting. No significant differences between the graphing-approach and traditional classes were found fur translation, modeling, and algebraic skills. Further, students in the graphing-approach classes showed significant improvements in their attitudes toward mathematics and technology, were less anxious about mathematics, and rated their class as more interesting and valuable.

  • PDF

Children's Representations of Numbers

  • Park, Han-Shick
    • Research in Mathematical Education
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • We discuss some aspects of mathematics for teachers such as algebra for teachers, geometry for teachers, statistics for teachers, etc., which can be taught in teacher preparation courses. Mathematics for teachers should consider the followings: (a) Various solutions for a problem, (b) The dynamics of a problem introduced by change of condition, (c) Relationship of mathematics to real life, (d) Mathematics history and historical issues, (e) The difference between pure mathematics and pedagogical mathematics, (f) Understanding of the theoretical backgrounds, and (g) Understanding advanced mathematics.

  • PDF

Representations Useful in Mathematics Education (수학교육에 유용한 표상)

  • Yoo, Yoon-Jae
    • The Mathematical Education
    • /
    • v.46 no.1 s.116
    • /
    • pp.123-134
    • /
    • 2007
  • In the article, representations useful in mathematics education are introduced and show how they are related in the context of mathematics education. They are classified in three categories: representations in mind, representations for understanding and problem solving, and mathematical representations.

  • PDF

Reconstruction and application of reforming textbook problems for mathematical modeling process (수학적 모델링 과정을 반영한 교과서 문제 재구성 예시 및 적용)

  • Park, SunYoung;Han, SunYoung
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.289-309
    • /
    • 2018
  • There has been a gradually increasing focus on adopting mathematical modeling techniques into school curricula and classrooms as a method to promote students' mathematical problem solving abilities. However, this approach is not commonly realized in today's classrooms due to the difficulty in developing appropriate mathematical modeling problems. This research focuses on developing reformulation strategies for those problems with regard to mathematical modeling. As the result of analyzing existing textbooks across three grade levels, the majority of problems related to the real-world focused on the Operating and Interpreting stage of the mathematical modeling process, while no real-world problem dealt with the Identifying variables stage. These results imply that the textbook problems cannot provide students with any chance to decide which variables are relevant and most important to know in the problem situation. Following from these results, reformulation strategies and reformulated problem examples were developed that would include the Identifying variables stage. These reformulated problem examples were then applied to a 7th grade classroom as a case study. From this case study, it is shown that: (1) the reformulated problems that included authentic events and questions would encourage students to better engage in understanding the situation and solving the problem, (2) the reformulated problems that included the Identifying variables stage would better foster the students' understanding of the situation and their ability to solve the problem, and (3) the reformulated problems that included the mathematical modeling process could be applied to lessons where new mathematical concepts are introduced, and the cooperative learning environment is required. This research can contribute to school classroom's incorporation of the mathematical modeling process with specific reformulating strategies and examples.

An Analysis of Assessment Items Based on Strands of Mathematical Proficiency (수학 실력(Mathematical Proficiency)의 구성요소별 평가 문항 분석)

  • Jeong, Gap-Nyeon;Ryu, Sung-Rim
    • Education of Primary School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Assessment provides valuable information for both teachers and students regarding how well each is doing. Assessment also defines what students must know and be able to do to succeed in a teacher's class. The purpose of this study is to analysis the mathematics assessment items based on strands of mathematical proficiency of National Research Council. According to the study results, the rate of right answers was high in adaptive reasoning and conceptual understanding(over 80%). On the other hand, the rate of right answers was lower in strategic competence(62%) than other strands.