• Title/Summary/Keyword: mathematical understanding

Search Result 1,034, Processing Time 0.028 seconds

The Case Study of High School Students' Understanding of the Concept of Parameter In A Computer Algebra Environment (컴퓨터 대수 환경에서 매개변수 개념에 대한 고등학생의 이해에 관한 사례 연구)

  • Cho, Yeong-Ju;Kim, Kyung-Mi
    • Communications of Mathematical Education
    • /
    • v.24 no.4
    • /
    • pp.949-974
    • /
    • 2010
  • The purpose of the study was to investigate how students' understanding was formed for solving the algebra problems involving parameters in a computer algebra environment. The teaching experiment has been conducted with 6 high school students. As a result, students studied the parameter in different roles such as placeholder, changing quantity, unknown and generalizer. The results indicate that a computer algebra environment offers opportunities for algebra activities that may support the development of understanding of the concept of parameter.

Relationships between Mathematical Learning Styles and the Selection of Mathematical Problem Solving Strategies : Focused on the 1st Grade High School Students (수학 학습유형과 문제 해결 전략)

  • Yang, Eun-Kyung;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.565-586
    • /
    • 2005
  • The purpose of this paper is to analyze the selection difference of mathematical problem solving strategy by mathematical learning style, that is, the intellectual, emotional, and physiological factors of students, to allow teachers to instruct the mathematical problem solving strategy most pertinent to the student personality, and ultimately to contribute to enhance mathematical problem solving ability of the students. The conclusion of the study is the followings: (1) Students who studies with autonomous, steady, or understanding-centered effort was able to solve problems with more strategies respectively than the students who did not; (2) Student who studies autonomously or reconfirms one's learning was able to select more proper strategy and to explain the strategy respectively than the students who did not; and (3) The differences of the preference to the strategy are variable, and more than half of the students were likely to select frequently the strategy 'to use a formula or a principle' regardless of the learning style.

  • PDF

A Paper on the Pedagogy Focused in the Mathematical Thinking Mathematicians used (수학자가 수학을 탐구하듯이 학습자도 수학을 탐구할 수 있는 방안 모색)

  • Kim, Jin-Ho
    • The Mathematical Education
    • /
    • v.44 no.1 s.108
    • /
    • pp.87-101
    • /
    • 2005
  • The purpose of this paper is to propose a teaching method which is focused on the mathematical thinking skills such as the use of induction, counter example, analogy, and so on mathematicians use when they explore their research fields. Many have indicated that students have learned mathematics exploring to use very different methods mathematicians have done and suggested students explore as they do. In the first part of the paper, the plausible whole processes from the beginning time they get a rough idea to a refined mathematical truth. In the second part, an example with Euler characteristic of 1. In the third, explaining the same processes with ${\pi}$, a model modified from the processes is designed. It is hoped that the suggested model, focused on a variety of mathematical thinking, helps students learn mathematics with understanding and with the association of exploring entertainment.

  • PDF

A Case Study on Activating of High School Student's Metacognitive Abilities in Mathematical Problem Solving Process using Visual Basic (비주얼 베이식을 이용한 수학 문제해결 과정에서 고등학생의 메타인지적 능력 활성화)

  • 이봉주;김원경
    • The Mathematical Education
    • /
    • v.42 no.5
    • /
    • pp.623-636
    • /
    • 2003
  • Metacognition is defined to be 'thinking about thinking' and 'knowing what we know and what we don't know'. It was verified that the metacognitive abilities of high school students can be improved via instruction. The purpose of this article is to investigate a new method for activating the metacognitive abilities that play a key role in the Mathematical Problem Solving Process(MPSP). Hyunsung participated in the MPSP using Visual Basic Programming. He actively participated in the MPSP. There are sufficient evidences about activating the metacognitive abilities via the activity processes and interviews. In solving mathematical problems, he had basic metacognitive abilities in the stage of understanding mathematical problems; through the experiments, he further developed his metacognitive abilities and successfully transferred them to general mathematical problem solving.

  • PDF

The Understanding on the Teacher and Student's Noticing in Mathematics Education (수학 교과에서의 교사와 학생 상호 주목하기(Noticing)에 관한 이해)

  • Kim, Seul Bi;Hwang, Hye Jeang
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.397-414
    • /
    • 2022
  • This study tried to explore and understand the meaning, and the properties of noticing. The result of this study were first, the difference in mathematical noticing is distinguished in either the object which is paid attention is different or the object is same but differently interpreted or react. The cause of each difference could be described as mathematical objects such as conceptual objects and perceptual features. Second, teachers' teaching strategies, which narrow the gap in attention and play a key role in the formation of mathematical meaning, appeared in various places. This teaching strategy was implemented to distract students' attention. This study confirmed that the mathematical attention of teachers and students in math classes will differ depending on the object to which they pay attention, and that difference will be narrowed through teacher's discourse practice and teaching strategies through communication strategies.

Teacher-student interaction patterns and teacher's discourse structures in understanding mathematical word problem (학생들의 수학 문장제 이해 과정에서 교사와 학생 간의 상호 작용 양상과 교사의 담론 구조)

  • Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.59 no.2
    • /
    • pp.101-112
    • /
    • 2020
  • The purpose of this study is to analyze the structures of teacher's discourse according to the pattern of interaction between teachers and students in the understanding mathematical word problem. The structures of teacher's discourse could be conceptualized as a process in which the teacher starts, develops and organizes the discourse based on prior research. For this purpose, the fourth class(example, a problem of the same type as the example, formative assessment, and final assessment) was extracted from one semester of experienced teachers who have been practicing teaching methods to facilitate student participation for many years. A methodology used to develop a theory based on data collected through classroom observations. Because the purpose of the study is to identify the structures of teacher's discourse to help the problem understanding, observe the teacher's discourse and collect data based on student engagement. Results show that the structure of teacher's discourse, which consults on important aspects of interaction between teachers-students and creates mathematical meanings, helped students understand the mathematics word problem by promoting their engagement in class. Based on the structures of teacher's discourse to understand problems based on the interaction patterns between teachers and students, it can be said that teachers provided specific methodologies on how to communicate with students in order to understand problems in the future.

An Analysis of Understanding Level of High School Students Shown in Trigonometric Functions (삼각함수에 대한 고등학생들의 이해 층위 분석)

  • Lee, Yu Bin;Cho, Cheong Soo
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.319-334
    • /
    • 2019
  • In this study, using the tasks related trigonometric functions, the degree of high school students' understanding of the function concept was examined through the level of Hitt(1998). First, the degree of the students' understanding was classified by level, then the concept understanding was reclassified by the process or the object. As a result, high school students' concept understanding showed incompleteness in three stages. It was possible to know that the process in the interpretation of the graph is the main perspective, and the operation of algebraic representation is regarded as important. Based on these results, it seems necessary to study the teaching-learning method which can understand trigonometric functions from various perspectives. It seems necessary to study a lesson model that can reach function concept's understanding level 5 that maintains consistency between problem solving and representation system.

Using Calculators in Mathematics Education in Koran Elementary Schools

  • Ahn, Byoung-Gon
    • Research in Mathematical Education
    • /
    • v.5 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • Mathematics subject of the seventh national curriculum in Korea, which has been effective since 2000, strongly encourages the use of calculators and computers to help children gain a better understanding of basic mathematical concepts and develop creative thinking and problem-solving skills without spending too much time and effort on making mechanical computations. Despite the recommendation by the national curriculum, however, only a small segment of elementary school teachers have been using calculators because of the fear that children\\`s dependence on calculators might bring about negative consequences. As a result, little research has been conducted in this area as well. This study has been conducted on the assumption that calculators have the potential for being a useful instructional tool in certain areas of elementary school mathematics education. To investigate the usefulness of calculators, a review was made of the scanty literature in the area. The literature review indicated that calculators are effective when they are used for the following purposes: understanding concepts and properties in numbers and operations, deducing mathematical rules, and solving problems. In view of the available research finding, we will give some concrete learning and teaching models of such uses of calculators. The teaching-learning models are organized around three categories: concept formation, discovery of principles and rules, and problem solving. Such organization is intended to help teachers use the models with ease.

  • PDF

A Study on a Student's Learning and Performance in Mathematics by Case Analysis (사례분석을 통한 학생의 수학학습 및 수행에 관한 연구)

  • Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.4 no.1
    • /
    • pp.79-95
    • /
    • 2002
  • This paper is to make strides toward an enriched understanding of student learning and performance in mathematics that acknowledges the roles social and cultural contexts play in what students learn as well as what we are able to team about student learning. A student's mathematical practice over a year and a half is presented in detail in order to explore the relationships between classroom contexts and student performance. This study was situated at a K-4 urban elementary school in the United States. The data used for this study included classroom observations, interviews with the teachers and the student, and document collection. The data were analyzed by characterizing each classroom context and exploring the student's practice both in the classrooms and in the interviews. Despite the student's ongoing status as a struggling student, there were tremendous changes in his level of engagement in and persistence with mathematical tasks. The student was substantially more engaged in and enthusiastic about the daily mathematics lessons in third grade than he had been in second. However, we found little improvement in his mathematical understanding and performance during class or in the interviews. This highlights that increased engagement in the mathematical tasks does not necessarily signal increased learning. This paper discusses several issues of learning and performance raised by the student, looking at the relationship between classroom context and student performance. This paper also considers implications for how students' performances are interpreted and how learning is assessed.

  • PDF

Enhancing Geometry and Measurement Learning Experiences through Rigorous Problem Solving and Equitable Instruction

  • Seshaiyer, Padmanabhan;Suh, Jennifer
    • Research in Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.201-225
    • /
    • 2022
  • This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.