• Title/Summary/Keyword: mathematical understanding

Search Result 1,034, Processing Time 0.028 seconds

Mathematical Creativity in Mathematics Education (수학교육과 수학적 창의성)

  • Whang, Woo-Hyung;Choi, Kye-Hyen;Kim, Kyung-Mi;Lee, Myeong-Hui
    • Communications of Mathematical Education
    • /
    • v.20 no.4 s.28
    • /
    • pp.561-574
    • /
    • 2006
  • Mathematical creativity has been confused with general creativity or mathematical problem solving ability in many studies. Also, it is considered as a special talent that only a few mathematicians and gifted students could possess. However, this paper revisited the mathematical creativity from a mathematics educator's point of view and attempted to redefine its definition. This paper proposes a model of creativity in school mathematics. It also proposes that the basis for mathematical creativity is in the understanding of basic mathematical concept and structure.

  • PDF

A Study on the Development of Computer Assisted Instruction for the Middle School Mathematics Education - Focused on the graph of quadratic function - (중학교 수학과 CAI 프로그램 개발 연구 -이차함수의 그래프를 중심으로-)

  • 장세민
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.151-163
    • /
    • 1998
  • In mathematics education, teaching-learning activity can be divided largely into the understanding the mathematical concepts, derivation of principles and laws, acquirement of the mathematical abilities. We utilize various media, teaching tools, audio-visual materials, manufacturing materials for understanding mathematical concepts. But sometimes we cannot define or explain correctly the concepts as well as the derivation of principles and laws by these materials. In order to solve the problem we can use the computer. In this paper, character and movement state of various quadratic function graph types can be used. Using the computers is more visible than other educational instruments like blackboards, O.H.Ps., etc. Then, students understand the mathematical concepts and the correct quadratic function graph correctly. Consquently more effective teaching-learning activity can be done. Usage of computers is the best method for improving the mathematical abilities because computers have functions of the immediate reaction, operation, reference and deduction. One of the important characters of mathematics is accuracy, so we use computers for improving mathematical abilities. This paper is about the program focused on the part of "the quadratic function graph", which exists in mathematical curriculum the middle school. When this program is used for students, it is expected the following educational effect. 1, Students will have positive thought by arousing interests of learning because this program is composed of pictures, animations with effectiveness of sound. 2. This program will cause students to form the mathematical concepts correctly. 3. By visualizing the process of drawing the quadratic function graph, students understand the quadratic function graph structually. 4. Through the feedback, the recognition ability of the trigonometric function can be improved. 5. It is possible to change the teacher-centered instruction into the student-centered instruction. For the purpose of increasing the efficiencies and qualities of mathmatics education, we have to seek the various learning-teaching methods. But considering that no computer can replace the teacher′s role, tearchers have to use the CIA program carefully.

  • PDF

A mathematics teacher's discursive competence on the basis of mathematical competencies (수학교과역량과 수학교사의 담론적 역량)

  • Choi, Sang-Ho;Kim, Dong-Joong
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.377-394
    • /
    • 2019
  • The purpose of this study is to scrutinize the characteristics of a teacher's discursive competence on the basis of mathematical competencies. For this purpose, we observed all semester-long classes of a middle school teacher, who changed her own teaching methods for the last 20 years, collected video clips on them, and analyzed classroom discourse. Data analysis shows that in problem solving competency, she helped students focus on mathematically important components for problem understanding, and in reasoning competency, there was a discursive competence which articulated thinking processes for understanding the needs of mathematical justification. And in creativity and confluence competency, there was a discursive competence which developed class discussions by sharing peers' problem solving methods and encouraging students to apply alternative problem solving methods, whereas in communication competency, there was a discursive competency which explored mathematical relationships through the need for multiple mathematical representations and discussions about their differences. These results can provide concrete directions to developing curricula for future teacher education by suggesting ideas about how to combine practices with PCK needed for mathematics teaching.

Students' mathematical noticing in arithmetic sequence lesson (등차수열 수업에서 나타나는 학생의 수학 주목하기)

  • Cho, Minsu;Lee, Soo Jin
    • Communications of Mathematical Education
    • /
    • v.38 no.1
    • /
    • pp.69-92
    • /
    • 2024
  • This study analyzed students' mathematical noticing in high school sequence classes based on students' two perceptions of sequence. Specifically, mathematical noticing was analyzed in four aspects: center of focus, focusing interaction, task features, and nature of mathematics activities, and the following results were obtained. First of all, the change pattern of central of focus could not be uniquely described by any one component among 'focusing interaction', 'task features', and 'the nature of mathematical activities'. Next, the interactions between the components of mathematical noticing were identified, and the teacher's individual feedback during small group activities influenced the formation of the center of focus. Finally, students showed two different modes of reasoning even within the same classroom, that is, focusing interaction, task features, and nature of mathematics activities that resulted in the same focus. It is hoped that this study will serve as a catalyst for more active research on students' understanding of sequence.

A Research on Teacher's Understanding of Infinity (교사의 무한개념 이해도 조사 연구)

  • 박임숙
    • The Mathematical Education
    • /
    • v.39 no.1
    • /
    • pp.37-47
    • /
    • 2000
  • Number concept is basic in mathematics education. But it is very complex and is not easy to understand real number concept, because of its infinity. This study tried to show that what percents of secondary school mathematics teachers in Korea understood the properties of real number, such as cardinality, continuity, relation with real line, and infinity, which were written by verbal language.

  • PDF

Primary School Students' Understanding of Equation Structure and the Meaning of Equal Sign: A Chinese Sample Study

  • Yang, Xinrong;Huo, Yujia;Yan, Yanxiong
    • Research in Mathematical Education
    • /
    • v.18 no.4
    • /
    • pp.237-256
    • /
    • 2014
  • This paper reports findings from a written assessment which was designed to investigate Chinese primary school students' understanding of the equal sign and equation structure. The investigation included a sample of 110 Grade 3, 112 Grade 4, and 110 Grade 5 students from four schools in China. Significant differences were identified among the three grades and no gender differences were found. The majority of Grades 3 and 4 students were found to view the equal sign as a place indicator meaning "write the answer here" or "do something like computation", that is, holding an operational view of the equal sign. A part of Grade 5 students were found to be able to interpret the equal sign as meaning "the same as", that is, holding a relational view of the equal sign. In addition, even though it was difficult for Grade 3 students to recognize the underlying structure in arithmetic equation, quite a number of Grades 4 and 5 students were able to recognize the underlying structure on some tasks. Findings in this study suggest that Chinese primary school students demonstrate a relational understanding of the equal sign and a strong structural sense of equations in an earlier grade. Moreover, what found in the study support the argument that students' understanding of the equal sign is influenced by the context in which the equal sign is presented.

An Analysis of the Relationship between Students' Understanding and their Word Problem Solving Strategies of Multiplication and Division of Fractions (분수의 곱셈과 나눗셈에 대한 학생의 이해와 문장제 해결의 관련성 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2011
  • The purpose of the study was to investigate how students understand multiplication and division of fractions and how their understanding influences the solutions of fractional word problems. Thirteen students from 5th to 6th grades were involved in the study. Students' understanding of operations with fractions was categorized into "a part of the parts", "multiplicative comparison", "equal groups", "area of a rectangular", and "computational procedures of fractional multiplication (e.g., multiply the numerators and denominators separately)" for multiplications, and "sharing", "measuring", "multiplicative inverse", and "computational procedures of fractional division (e.g., multiply by the reciprocal)" for divisions. Most students understood multiplications as a situation of multiplicative comparison, and divisions as a situation of measuring. In addition, some students understood operations of fractions as computational procedures without associating these operations with the particular situations (e.g., equal groups, sharing). Most students tended to solve the word problems based on their semantic structure of these operations. Students with the same understanding of multiplication and division of fractions showed some commonalities during solving word problems. Particularly, some students who understood operations on fractions as computational procedures without assigning meanings could not solve word problems with fractions successfully compared to other students.

An Analysis of Students' Understanding on Unit Fraction : Focusing on Teaching Context and Visual Representation (단위분수에 대한 초등학교 3학년 학생들의 이해 분석 : 지도 맥락과 시각적 표현의 관점에서)

  • Lim, Miin
    • The Mathematical Education
    • /
    • v.57 no.1
    • /
    • pp.37-54
    • /
    • 2018
  • Despite the significance of fraction in elementary mathematics education, it is not easy to teach it meaningfully in connection with real life in Korea. This study aims to investigate and analyze 3rd grade students' understanding on unit fraction concepts and on comparison of unit fractions and to identify the parts which need to be supplemented in relation to unit fraction. For these purposes, I reviewed previous studies and extracted chapters which cover unit fractions in elementary mathematics textbooks based on 2009 revised curriculums and analyzed teaching contexts and visual representations of unit fractions. From this point of view, I constructed a test which consists of three problems based on Chval et al(2013) to investigate students' understanding on unit fraction. To apply this test, I selected forty-one 3rd grade students and examined that students' aspects of understanding on unit fraction. The results were analyzed both qualitatively and quantitatively. In this study, I present the analysis results and provide implications and some didactical suggestions for teaching contexts and visual representations of unit fraction based on the discussion.

An Investigation on the Undentanding of Spatial Sense of Elementary School Students (초등학생들의 공간감각 이해능력 실태조사)

  • Lee, Sung-Mi;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.273-292
    • /
    • 2007
  • The purpose of this study was to find out how second, fourth and sixth graders understood the main contents related to spatial sense in the Seventh National Mathematics Curriculum. For this purpose, this study examined students' understanding of the main contents of congruence transformation (slide, flip, turn), mirror symmetry, cubes, congruence and symmetry. An investigation was conducted and the subjects included 483 students. The main results are as follows. First, with regards to congruence transformation, whereas students had high percentages of correct answers on questions concerning slide, they had lower percentages on questions concerning turn. Percentages of correct answers on flip questions had significant differences among the three grades. In addition, most students experienced difficulties in describing the changes of shapes. Second, students understood the fact that the right and the left of an image in a mirror are exchanged, but they had poor overall understanding of mirror symmetry. The more complicated the cubes, the lower percentages of correct answers. Third, students had a good understanding of congruences, but they had difficulties in finding out congruent figures. Lastly, they had a poor understanding of symmetry and, in particular, didn't distinguish a symmetric figure of a line from a symmetric figure of a point.

  • PDF

A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts (고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색)

  • 한길준;우호식
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF