• Title/Summary/Keyword: mathematical symbols

Search Result 149, Processing Time 0.022 seconds

Mathematically Gifted Students' Justification Patterns and Mathematical Representation on a Task of Spatial Geometry (수학영재들의 아르키메데스 다면체 탐구 과정 - 정당화 과정과 표현 과정을 중심으로 -)

  • Lee, Kyong-Hwa;Choi, Nam-Kwang;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.487-506
    • /
    • 2007
  • The aims of this study is figure out the characteristics of justification patterns and mathematical representation which are derived from 14 mathematically gifted middle school students in the process of solving the spatial tasks on Archimedean solid. This study shows that mathematically gifted students apply different types of justification such as empirical, or deductive justification and partial or whole justification. It would be necessary to pay attention to the value of informal justification, by comparing the response of student who understood the entire transformation process and provided a reasonable explanation considering all component factors although presenting informal justification and that of student who showed formalization process based on partial analysis. Visual representation plays an valuable role in finding out the Idea of solving the problem and grasping the entire structure of the problem. We found that gifted students tried to create elaborated symbols by consolidating mathematical concepts into symbolic re-presentations and modifying them while gradually developing symbolic representations. This study on justification patterns and mathematical representation of mathematically gifted students dealing with spatial geometry tasks provided an opportunity for understanding their the characteristics of spacial geometrical thinking and expending their thinking.

  • PDF

The Characteristics of Mathematical Errors & Discourse in a Supplementary Class for the Migrant Students from North Korea (탈북학생들을 위한 수학 보충학습에서 담론 속에 나타난 오류유형과 담론의 특성)

  • ChoiKoh, Sang-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.1
    • /
    • pp.53-80
    • /
    • 2012
  • This study was designed to find the characteristics of mathematical errors and discourse in simultaneous equations and inequalities for migrant students from North Korea. 5 sample students participated, who attended in an alternative school for the migrant students from North Korea at the study in Seoul, Korea. A total of 8 lesson units were performed as an extra curriculum activity once a week during the 1st semester, 2011. The results indicated that students showed technical errors, encoding errors, misunderstood symbols, misinterpreted language, and misunderstood Chines characters of Koreans and the discourse levels improved from the zero level to the third level, but the scenes of the third level did not constantly happen. Nevertheless, the components of discourse, explanation & justification, were activated and as a result, evaluation & elaboration increased in ERE pattern on communication.

  • PDF

The Characteristics of Middle School Mathematics Achievement Levels Based on the Results of the National Assessment of Educational Achievement from 2010 to 2012 (2010-2012년 국가수준 학업성취도 평가 결과에 나타난 중학교 수학과 성취수준별 학업성취 특성)

  • Lee, Kwang Sang;Jo, Yun Dong
    • School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.237-257
    • /
    • 2014
  • The purpose of this study is to investigate the academic achievement characteristics in terms of proficiency levels through the in-depth analysis of mathematics test items and achievement standards of the National Assessment of Educational Achievement(NAEA) from 2010 to 2012, and to provide suggestions for teaching and assessing mathematics in middle schools. The results showed that 'Advanced level' students could fully understand the concept of mathematical terms and symbols as well as various mathematical properties presented in the national curriculum. However, 'Proficient level' students tended to feel difficult to apply linear function, properties of a plane figure, and a solid figure, while 'Basic level' students seemed to have trouble solving mathematical problems in almost all areas. Thus, it is necessary to identify the mathematical misconceptions that students have and to strengthen teaching, particularly, the areas of number and operation.

  • PDF

Case Study on the 6th Graders' Understanding of Concepts of Variable (초등학교 6학년 학생들의 변수 개념 이해에 관한 사례 연구)

  • Ha, Su-Hyun;Lee, Gwang-Ho
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.213-231
    • /
    • 2011
  • The purpose of this study is to analyze the 6th graders' understanding of the concepts of variable on various aspects of school algebra. For this purpose, the test of concepts of variable targeting a sixth-grade class was conducted and then two students were selected for in-depth interview. The level of mathematics achievement of the two students was not significantly different but there were differences between them in terms of understanding about the concepts of variable. The results obtained in this study are as follows: First, the students had little basic understanding of the variables and they had many cognitive difficulties with respect to the variables. Second, the students were familiar with only the symbol '${\Box}$' not the other letters nor symbols. Third, students comprehended the variable as generalizers imperfectly. Fourth, the students' skill of operations between letters was below expectations and there was the student who omitted the mathematical sign in letter expressions including the mathematical sign such as x+3. Fifth, the students lacked the ability to reason the patterns inductively and symbolize them using variables. Sixth, in connection with the variables in functional relationships, the students were more familiar with the potential and discrete variation than practical and continuous variation. On the basis of the results, this study gives several implications related to the early algebra education, especially the teaching methods of variables.

수학사를 활용한 수학수업이 수학과 학습 태도에 미치는 영향

  • Yoo, Kum-Soon;Nam, Young-Man
    • East Asian mathematical journal
    • /
    • v.28 no.4
    • /
    • pp.383-401
    • /
    • 2012
  • The purpose of mathematics education includes two important areas; cognitive area that emphasizes mathematical knowledge and understanding and affective area that stresses mathematical interest and attitude. The purpose of mathematics education is not only in acquiring the contents and knowledge but also rousing up interest and attention toward mathematics. Therefore, effort to accomplish this affective purpose has to be made. Introducing history of mathematics to teaching can be a important method for the students to arouse interest and attention toward mathematics. History of mathematics can help the students who are familiar to only manipulation of the symbols to develop a new way of thinking and mathematical thoughts arousing reflective thinking. According to the survey, although the effect of using mathematics history has been recognized, the mathematics history has neither been developed as teaching materials nor reflected in the courses of study. The purpose of this research is to develop the reading materials into suit for the mathematics curriculum to extract contents of the mathematics valuable in using in elementary mathematics teaching, and to investigate the effect of reading materials using the history of mathematics on learning attitude in elementary school. The way of developing materials in this study is as follows. First, to select the interesting and instructive subject for the elementary students such as the story and life of a mathematician, developmental stages of mathematical theory and calculation currently used and finding the patterns of the rules that requires mathematical thoughts. Second, to classify the selected items according to mathematics curriculum. Third, to reorganize the classified items of the appropriate grade with the reading materials of dialogue pattern in order to draw attention and interest from the students I developed 18 kinds materials in accordance with the above procedure and applied 5 materials among them to one class in 4th grade. Analysing the student's responses, First, using history of mathematics helps the students to arouse interest and confidence on mathematical learning attitude. And the students became better attitude of studying by oneself and attention on class. Second, as know by opinions after lesson, most students have a chance refresh one's thinking of mathematics, want to know the other content of history of mathematics and responded to study hard in mathematics. As a result, the reading materials on the basis of the history of mathematics motivates students for mathematics and helps them become confident in mathematics. If the materials are complemented properly, they will be useful and effective for students and teachers.

On the Instructions of Concepts of Decimal Fractions (소수 개념 지도에 관한 연구)

  • 김용태;임해경;안병곤;신봉숙
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.1
    • /
    • pp.223-238
    • /
    • 2001
  • Decimal fractions are the practical system of notations representing real numbers. The set of decimal fractions with the definition of comparison of decimal fractions and the identification of their double representations is essentially the field of real numbers. Therefore, we have to clarify the concept of decimal fractions. However, there are problematics that the aquisition of the concept of decimal fractions is not easy. In this paper, we attempt to eradicate the problematics relevant to the acquisition of decimal fractions discussed above and find the desirable direction of instruction of meaning for mathematical symbols: The case of decimal fractions. In J. Hiebert & decimal fractions. First of all, we clarify the essence of them - ratio, operator and linearity. And we compare and analyse the theories about decimal fractions of Resnick, Drexel, Brousseau and Hiebert and the contents of texts about decimal fractions in Korea. Finally, we suggest the efficient instruction methods which are faithful to the essence of decimal fractions and choose some methods among them to plan the classroom instruction and implement the methods in the classroom.

  • PDF

GENERALIZED SOBOLEV SPACES OF EXPONENTIAL TYPE

  • Lee, Sungjin
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.73-86
    • /
    • 2000
  • We study the Sobolev spaces to the generalized Sobolev spaces $H^s_{\mathcal{G}}$ of exponential type based on the Silva space $\mathcal{G}$ and investigate its properties such as imbedding theorem and structure theorem. In fact, the imbedding theorem says that for $s$ > 0 $u{\in}H^s_{\mathcal{G}}$ can be analytically continued to the set {$z{\in}\mathbb{C}^n{\mid}{\mid}Im\;z{\mid}$ < $s$}. Also, the structure theorem means that for $s$ > 0 $u{\in}H^{-s}_{\mathcal{G}}$ is of the form $$u={\sum_{\alpha}\frac{s^{{|\alpha|}}}{{\alpha}!}D^{\alpha}g{\alpha}$$ where $g{\alpha}$'s are square integrable functions for ${\alpha}{\in}\mathbb{N}^n_0$. Moreover, we introduce a classes of symbols of exponential type and its associated pseudo-differential operators of exponential type, which naturally act on the generalized Sobolev spaces of exponential type. Finally, a generalized Bessel potential is defined and its properties are investigated.

  • PDF

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

Recognition of dimension lines based on extraction of the objet in mechanical drawings (기계 도면에서 객체의 분리 추출에 기반한 치수선의 인식)

  • 정영수;박길흠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.120-131
    • /
    • 1997
  • This paper prsents a new method that automatically recognizes the dimension lines (consisting of shape lines, tail lines and extension lines) from the mechanical drawings. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then the object lines and interpretation lines are vectorized by using several techniques such as thinning, line-vectorization, and vector-clustering. Finally, after recognizing arrowheads by using pattern matching, we recognize dimension lines from interpretation lines by using arrohead's directional vector and centroid. By using the methods of geometric modeling and mathematical operation, the proposed method readility recognizes the dimension lines from complex drawings. Experimental resuls are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

On the Algebraic Concepts in Euclid's Elements (유클리드의 원론에 나타난 대수적 개념에 대하여)

  • 홍진곤;권석일
    • Journal for History of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • In this paper, Ive investigated algebraic concepts which are contained in Euclid's Elements. In the Books II, V, and VII∼X of Elements, there are concepts of quadratic equation, ratio, irrational numbers, and so on. We also analyzed them for mathematical meaning with modem symbols and terms. From this, we can find the essence of the genesis of algebra, and the implications for students' mathematization through the experience of the situation where mathematics was made at first.

  • PDF