• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.022 seconds

An analysis of trends in argumentation research: A focus on international mathematics education journals (논증 연구의 동향 분석: 국외의 수학교육 학술지를 중심으로)

  • Jinam Hwang;Yujin Lee
    • The Mathematical Education
    • /
    • v.63 no.1
    • /
    • pp.105-122
    • /
    • 2024
  • This study analyzed the research trends of 101 articles published in prominent international mathematics education journals over 24 years from 2000, when NCTM's recommendation emphasizing argumentation was released, until September 2023. We first examined the overall trend of argumentation research and then analyzed representative research topics. We found that students were the focus of the studies. However, several studies focused on teachers. More studies were examined in secondary school than in elementary school, and many were conducted in argumentation in classroom contexts. We also found that argumentation research is becoming increasingly popular in international journals. The representative research topics included 'teaching practice,' 'argumentation structure,' 'proof,' 'student understanding,' and 'student reasoning.' Based on our findings, we could categorize three perspectives on argumentation: formal, contextual, and purposeful. This paper concludes with implications on the meaning and role of argumentation in Korean mathematics education.

A Study on Mathematical Justification of Elementary School Teachers (초등학교 교사들의 수학적 정당화에 대한 연구)

  • Kim, Jeong-Ha;Kang, Moon-Bong
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.371-392
    • /
    • 2009
  • A lot of researches state mathematical justification is important. Specially, NCTM (2000) mentions that mathematical reasoning and proof should be taught every student from pre-primary school to 12 grades. Some of researches say elementary school students are also able to prove and justify their own solution(Lester, 1975; King, 1970, 1973; Reid, 2002). Balacheff(1987), Tall(1995), Harel & Sowder(1998, 2007), Simon & Blume(1996) categorize the level or the types of mathematical justification. We re-categorize the 4 types of mathematical justification basis on their studies; external conviction justification, empirical-inductive justification, generic justification, deductive justification. External conviction justification consists of authoritarian justification, ritual justification, non-referential symbolic justification. empirical-inductive justification consists of naive examples justification and crucial example justification. Generic justification consists of generic example and visual example. The results of this research are following. First, elementary school teachers in Korea respectively understand mathematical justification well. Second, elementary school teachers in Korea prefer deductive justification when they justify by themselves, while they prefer empirical-inductive justification when they teach students.

  • PDF

A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics (중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구)

  • Hong, Yong-Suk;Son, Hong-Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.3
    • /
    • pp.261-282
    • /
    • 2021
  • This study identified the meaning of mathematical justification and its characteristics for middle school math gifted students. 17 middle school math gifted students participated in questionnaires and written exams. Results show that the gifted students recognized justification in various meanings such as proof, systematization, discovery, intellectual challenge of mathematical justification, and the preference for deductive justification. As a result of justification exams, there was a difference in algebra and geometry. While there were many deductive justifications in both algebra and geometry questionnaires, the difference exists in empirical justifications: there were many empirical justifications in algebra, but there were few in geometry questions. When deductive justification was completed, the students showed satisfaction with their own justification. However, they showed dissatisfaction when they could not deductively justify the generality of the proposition using mathematical symbols. From the results of the study, it was found that justification education that can improve algebraic translation ability is necessary so that gifted students can realize the limitations and usefulness of empirical reasoning and make deductive justification.

Sequent Calculus and Cut-Elimination (순차식 연산 (Sequent calculus)과 절단제거 (Cut elimination))

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.45-56
    • /
    • 2010
  • Sequent Calculus is a symmetrical version of the Natural Deduction which Gentzen restructured in 1934, where he presents 'Hauptsatz'. In this thesis, we will examine why the Cut-Elimination Theorem has such an important status in Proof Theory despite of the efficiency of the Cut Rule. Subsequently, the dynamic side of Curry-Howard correspondence which interprets the system of Natural Deduction as 'Simply typed $\lambda$-calculus', so to speak the correspondence of Cut-Elimination and $\beta$-reduction in $\lambda$-calculus, will also be studied. The importance of this correspondence lies in matching the world of program and the world of mathematical proof. Also it guarantees the accuracy of program.

Mathematical Content Knowledge of Secondary Mathematics Teachers (중등 수학교사의 수학내용 지식)

  • Cho, Wan-Young
    • School Mathematics
    • /
    • v.13 no.2
    • /
    • pp.345-362
    • /
    • 2011
  • This paper addresses mathematics content knowledge required for teaching in secondary school. Three components of mathematical knowledge are needed for teaching: (i) knowing school mathematics, (ii) knowing process of school mathematics, (iii) making connections between school mathematics and advanced mathematics. We investigated mathematics content knowledge of secondary teachers. We found that secondary mathematics teachers have a lack of understanding in solving realistic problem, reasoning and proof, and making connections between school mathematics and advanced mathematics.

  • PDF

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.

On the Isoperimetric Problem of Polygons: the mathematical reasoning and proof with the Geometer's Sketchpad (다각형의 등주문제: Geometer's Sketchpad로 수학적 추론과 정당화하기)

  • Choi, Keunbae
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.257-273
    • /
    • 2018
  • In this paper, we deal with the isoprimetric problem of polygons from the point of view of learning materials for elementary gifted students. The isoperimetric problem of the polygon of odd degree can be solved by E-transformation(see Figure III-1) and M-transformation(see Figure III-3). But in the case of even degree's polygon, it is quite difficult to solve the problem because of the connected components of diagonals (here we consider the diagonals forming triangle with two adjacent sides of polygon). The primary purpose of this paper is to give an idea to solve the isoperimetric problem of polygons of even degree using the properties of ellipse. This idea is derived from the programs of the Institute of Science Education for Gifted Students in the Jeju National University.

시각화를 이용한 증명교육

  • Kang, Mee-Kwang;Kim, Myung-Jee
    • East Asian mathematical journal
    • /
    • v.24 no.5
    • /
    • pp.527-545
    • /
    • 2008
  • One of the education purpose of the section "Figures" in the eighth grade is to develop students' deductive reasoning ability, which is basic and essential for living in a democratic society. However, most or middle school students feel much more difficulty or even frustration in the study of formal arguments for geometric situations than any other mathematical fields. It is owing to the big gap between inductive reasoning in elementary school education and deductive reasoning, which is not intuitive, in middle school education. Also, it is very burden for students to describe geometric statements exactly by using various appropriate symbols. Moreover, Usage of the same symbols for angle and angle measurement or segments and segments measurement makes students more confused. Since geometric relations is mainly determined by the measurements of geometric objects, students should be able to interpret the geometric properties to the algebraic properties, and vice verse. In this paper, we first compare and contrast inductive and deductive reasoning approaches to justify geometric facts and relations in school curricula. Convincing arguments are based on experiment and experience, then are developed from inductive reasoning to deductive proofs. We introduce teaching methods to help students's understanding for deductive reasoning in the textbook by using stepwise visualization materials. It is desirable that an effective proof instruction should be able to provide teaching methods and visual materials suitable for students' intellectual level and their own intuition.

  • PDF

The algebraic completion of the rational numbers based on ATD (ATD에 근거한 유리수의 대수학적 completion에 관한 연구)

  • Kim, Boo-Yoon;Chung, Gyeong-Mee
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2011
  • We can say that the history of mathematics is the history on the development of the number system. The number starts from Natural number and is constructed to Integer number and Rational number. The Rational number is not the complete number analytically so that Real number is completed by the idea of the nested interval method. Real number is completed analytically, however, is not by algebra, so the algebraically completed type of the rational number, through the way that similar to the process of completing real number, is Complex number. The purpose of this study is to show the most appropriate way for the development of the human being thinking about the teaching and leaning of Complex number. To do this, We have to consider the proof of the existence of Complex number, the background of the introduction of Complex number and the background knowledge that the teachers to teach Complex number should have. Also, this study analyzes the knowledge to be taught of Complex number based on the anthropological theory of didactics and finally presents the teaching method of Complex number based on this theory.

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF