• Title/Summary/Keyword: mathematical problem solving process

Search Result 343, Processing Time 0.027 seconds

Flexibility of Mind and Divergent Thinking in Problem Solving Process (수학적 사고의 유연성과 확산적 사고)

  • Choi, Youn-Gi;Do, Jong-Hoon
    • The Mathematical Education
    • /
    • v.44 no.1 s.108
    • /
    • pp.103-112
    • /
    • 2005
  • This paper is designed to characterize the concept of flexibility of mind and analyze relationship between flexibility of mind and divergent thinking in view of mathematical problem solving. This study shows that flexibility of mind is characterized by two constructs, ability to overcome fixed mind in stage of problem understanding and ability to shift a viewpoint in stage of problem solving process, Through the analysis of writing test, we come to the conclusion that students who overcome fixed mind surpass others in divergent thinking and so do students who are able to shift a viewpoint.

  • PDF

A Concretization and Application of Deductive Problem Making Method (연역적 문제만들기 방법의 구체화와 활용)

  • Han, Inki;Huh, Eunsook;Seo, Eunhee
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.653-674
    • /
    • 2023
  • The development of mathematical problem solving ability and the making(transforming) mathematical problems are consistently emphasized in the mathematics curriculum. However, research on the problem making methods or the analysis of the characteristics of problem making methods itself is not yet active in mathematics education in Korea. In this study, we concretize the method of deductive problem making(DPM) in a different direction from the what-if-not method proposed by Brown & Walter, and present the characteristics and phases of this method. Since in DPM the components of the problem solving process of the initial problem are changed and problems are made by going backwards from the phases of problem solving procedure, so the problem solving process precedes the formulating problem. The DPM is related to the verifying and expanding the results of problem solving in the reflection phase of problem solving. And when a teacher wants to transform or expand an initial problem for practice problems or tests, etc., DPM can be used.

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF

A Study on Development of Problem Contexts for an Application to Mathematical Modeling (수학적 모델링 적용을 위한 문제상황 개발 및 적용)

  • Kim, Min-Kyeong;Hong, Jee-Yun;Kim, Hye-Won
    • The Mathematical Education
    • /
    • v.49 no.3
    • /
    • pp.313-328
    • /
    • 2010
  • Mathematical modeling has been observed in the way of a possibility to contribute in improving students' problem solving abilities. One of the important views of real life problem context could be described such as a useful ways to interpret the real life leading to children's abstraction process. The problem contexts for the grade 6 with mathematical modeling perspectives were developed by reviewing the current 7th National Mathematics Curriculum of Korea. Those include the 5 content areas such as number & operation, geometry, measurement, probability & statistics, and pattern & problem solving. One of problem contexts, "Space", specially designed for pattern & problem solving area, was applied to the grade 6 students and analyzed in detail to understand student's mathematical modeling progress.

The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students (중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향)

  • Kwon Se Hwa;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.109-119
    • /
    • 1992
  • The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

  • PDF

A Psychological Model for Mathematical Problem Solving based on Revised Bloom Taxonomy for High School Girl Students

  • Hajibaba, Maryam;Radmehr, Farzad;Alamolhodaei, Hassan
    • Research in Mathematical Education
    • /
    • v.17 no.3
    • /
    • pp.199-220
    • /
    • 2013
  • The main objective of this study is to explore the relationship between psychological factors (i.e. math anxiety, attention, attitude, Working Memory Capacity (WMC), and Field dependency) and students' mathematics problem solving based on Revised Bloom Taxonomy. A sample of 169 K11 school girls were tested on (1) The Witkin's cognitive style (Group Embedded Figure Test). (2) Digit Span Backwards Test. (3) Mathematics Anxiety Rating Scale (MARS). (4) Modified Fennema-Sherman Attitude Scales. (5) Mathematics Attention Test (MAT), and (6) Mathematics questions based on Revised Bloom Taxonomy (RBT). Results obtained indicate that the effect of these items on students mathematical problem solving is different in each cognitive process and level of knowledge dimension.

A Study on Mathematical Creativity of Middle School Mathematical Gifted Students (중등수학영재의 수학적 창의성에 대한 고찰)

  • Kim, Dong Hwa;Kim, Young A;Kang, Joo Young
    • East Asian mathematical journal
    • /
    • v.34 no.4
    • /
    • pp.429-449
    • /
    • 2018
  • The purpose of this study is to investigate how the mathematical creativity of middle school mathematical gifted students is represented through the process of problem posing activities. For this goal, they were asked to pose real-world problems similar to the tasks which had been solved together in advance. This study demonstrated that just 2 of 15 pupils showed mathematical giftedness as well as mathematical creativity. And selecting mathematically creative and gifted pupils through creative problem-solving test consisting of problem solving tasks should be conducted very carefully to prevent missing excellent candidates. A couple of pupils who have been exerting their efforts in getting private tutoring seemed not overcoming algorithmic fixation and showed negative attitude in finding new problems and divergent approaches or solutions, though they showed excellence in solving typical mathematics problems. Thus, we conclude that it is necessary to incorporate problem posing tasks as well as multiple solution tasks into both screening process of gifted pupils and mathematics gifted classes for effective assessing and fostering mathematical creativity.

An Analysis on the Mathematical Problem Solving via Intuitive Thinking of the Korean and American 6th Grade Students (한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석)

  • Lee, Dae Hyun
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.

An Investigation of Cognitive-Metacognitive Characteristics in Problem Solving Behavior

  • Yoon, Suk-Im
    • Research in Mathematical Education
    • /
    • v.5 no.1
    • /
    • pp.59-75
    • /
    • 2001
  • This paper reports an investigation of problem solving activities of students at university level students. The study focused on the cognitive-metacognitive and affective activities appeared in problem solving process. The cognitive-metacognitive framework was used to analyzed and categorize the written response and free response of interviews probing the students\\` cognitive-metacognitive activities. Affective factors were assessed by administering the problem solving survey (Carlson, The emergence of students\\` problem solving behavior, 1999). This study provide an insight for the design of problem solving instruction by identifying cognitive, metacognitive and affective characteristics of the students\\` problem solving behaviors. The results report that the metacognitive factor were significantly related to problem solving performance interacting with both cognitive and affective factors.

  • PDF

Analysis of Collaborative Utterances among Elementary Students in Problem-Solving Process (문제 해결 과정에서 나타나는 초등학생들의 협력적 발화 특성 분석)

  • Lee, Boram;Park, Mangoo
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.271-287
    • /
    • 2018
  • This is a case study that defined collaborative utterances and analyzed how they appear in the problem-solving process when 5th-grade students solved problems in groups. As a result, collaborative utterances consist of an interchange type and a deliver type and the interchange type is comprised of two process: the verification process and the modification process. Also, in groups where interchange type collaborative utterances were generated actively and students could reach an agreement easily, students applied the teacher's help to their problem-solving process right after it was provided and could solve problems even though they had some mathematics errors. In interchange-type collaborative utterances, each student's participation varies with their individual achievement. In deliver-type collaborative utterances, students who solved problems by themselves participated dominantly. The conclusions of this paper are as follows. First, interchange-type collaborative utterances fostered students' active participation and accelerated students' arguments. Second, interchange-type collaborative utterances positively influenced the problem-solving process and it is necessary to provide problems that consider students' achievement in each group. Third, groups should be comprised of students whose individual achievements are similar because students' participation in collaborative utterances varies with their achievement.