This study attempted to figure out new teaching method of mathematics teaching-learning by applying Polya's 4-level strategy to mild disability students at the H Special-education high school where the research works for. In particular, epilogue and suggestion, which Polya stressed were selected and reconstructed for mild disability students. Prior test and post test were carried by putting the Polya's problem solving strategy as independent variable, and problem solving ability as dependent variable. As a result, by continual use of Polya's program in mathematics teaching course, it suggested necessary strategies to solve mathematics problems for mild disability students and was proven that Polya's heuristic training was of help to improve problem solving in mathematics.
This study investigated what effects multiple intelligence, through which the diverse intelligence abilities of a learner are identified, has on technological problem solving ability according to sex. And it was carried out to present a way to reduce the gap between boys and girls in technological problem solving ability. The subject was 833 middle school students in the third grade (boys: 423, girls: 410) whose schools are located in a megalopolis or more large area. And the instruments developed by Yong-Lyn Moon(2001) and in CRESST(1998) were used. The results of this study are as follows. First, it appeared that there were statistically meaningful differences at six items in multiple intelligence between boys and girls. The six items were bodily-kinesthetic intelligence, logical-mathematical intelligence, naturalistic intelligence, musical intelligence, interpersonal intelligence, and introspective intelligence. Second, in technological problem solving ability, it appeared that boys and girls showed statistically meaningful differences at self-regulation and problem solving strategy. Third, it appeared that logical-mathematical intelligence, linguistic intelligence, introspective intelligence, and natural intelligence had an effect on boys in the way of self-regulation and logic-mathematical intelligence, introspective intelligence, naturalistic intelligence, and linguistic intelligence did on girls. Fourth, it appeared that logical-mathematical intelligence, musical intelligence, and bodily-kinesthetic intelligence had an effect on boys in the way of problem solving ability and linguistic intelligence and musical intelligence had on girls. Fifth, it appeared that logical-mathematical intelligence did an effect on both sexes in drawing up the understanding of contents. On the basis of the results of this study, the area related to multiple intelligence directly or indirectly should be developed in the course of designing the primary and secondary curriculums to reduce the gap between boys and girls in multiple intelligence. With these efforts, the scholastic attainments gap caused by the difference of multiple intelligence will be overcome.
Problem solving in math education is of great importance. The interest on problem solving in math education is growing all over the world. Problem solving ability is important throughout the fourth-sixth national curriculum in Korea and this is also necessary in the seventh national curriculum. The writer has implemented a proper model for problem posing and this is also necessary in the seventh national curriculum that emphasizes self-leading for improvement in the classroom. This model has advantages to cultivate a good habit of students who tries to solve the problems with concrete strategies, to take part in the problem solving activity and to change their mathematical attitude.
The study aimed to explore how to improve mathematical thinking through metacognitive learning by stressing metacognitive abilities as a core strategy to increase mathematical creativity and problem-solving abilities. Theoretical exploration was followed by an analysis of correlations between metacognitive abilities and various ways of mathematical thinking. Various metacognitive teaching and learning methods used by many teachers at school were integrated for sharing. Also, the methods of learning application and assessment of metacognitive thinking were explored. The results are as follows: First, metacognitive abilities were positively related to 'reasoning, communication, creative problem solving and commitment' with direct and indirect effects on mathematical thinking. Second, various megacognitive ability-applied teaching and learning methods had positive impacts on definitive areas such as 'anxiety over Mathematics, self-efficacy, learning habit, interest, confidence and trust' as well as cognitive areas such as 'learning performance, reasoning, problem solving, metacognitive ability, communication and expression', which is a result applicable to top, middle and low-performance students at primary and secondary education facilities. Third, 'metacognitive activities, metaproblem-solving process, personal strength and weakness management project, metacognitive notes, observation tables and metacognitive checklists' for metacognitive learning were suggested as alternatives to performance assessment covering problem-solving and thinking processes. Various metacognitive learning methods helped to improve creative and systemic problem solving and increase mathematical thinking. They did not only imitate uniform problem-solving methods suggested by a teacher but also induced direct experiences of mathematical thinking as well as adjustment and control of the thinking process. The study will help teachers recognize the importance of metacognition, devise and apply teaching or learning models for their teaching environments, improving students' metacognitive ability as well as mathematical and creative thinking.
The purpose of the study was to investigate the effects of the use of RNP curriculum based on Lesh translation model on third grade students' understandings of fraction concepts and problem solving ability. Students' conceptual understandings of fractions and problem solving ability were improved by the use of the curriculum. Various manipulative experiences and translation processes between and among representations facilitated students' conceptual understandings of fractions and contributed to the development of problem solving strategies. Expecially, in problem situations including fraction ordering which was not covered during the study, mental images of fractions constructed by the experiences with manipulatives played a central role as a problem solving strategy.
The purpose of this study was to develop math creative problem solving test in order to identify the mathematically gifted on the basis of their math creative problem solving ability and evaluate the goodness of the test in terms of its reliability and validity of measuring creativity in math problem solving on the basis of fluency in producing valid solutions. Ten open math problems were developed requiring math thinking abilities such as intuitive insight, organization of information, inductive and deductive reasoning, generalization and application, and reflective thinking. The 10 open math test items were administered to 2,029 Grade 5 students who were recommended by their teachers as candidates for gifted education programs. Fluency, the number of valid solutions, in each problem was scored by math teachers. Their responses were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. The item analyses revealed that the problems were good in reliability, validity, difficulty, and discrimination power even when creativity was scored with the single criteria of fluency. This also confirmed that the open problems which are less-defined, less-structured and non-entrenched were good in measuring math creativity of the candidates for math gifted education programs. In addition, it discriminated applicants for two different gifted educational institutions and between male and female students as well.
The selected questions for this study was their conversation in problem solving way of working together. To achieve its purpose researcher I chose more detail questions for this study as follows. $\circled1$ What is the difference of strategy according to its level \ulcorner $\circled2$ What is the mathematical ability difference in problem solving process concerning its level \ulcorner This is the result of the study $\circled1$ Difference in the strategy of each class of students. High class-high class students found rules with trial and error strategy, simplified them and restated them in uncertain framed problems, and write a formula with recalling their theorem and definition and solved them. High class-middle class students' knowledge and understanding of the problem, yet middle class students tended to rely on high class students' problem solving ability, using trial and error strategy. However, middle class-middle class students had difficulties in finding rules to solve the problem and relied upon guessing the answers through illogical way instead of using the strategy of writing a formula. $\circled2$ Mathematical ability difference in problem solving process of each class. There was not much difference between high class-high class and high class-middle class, but with middle class-middle class was very distinctive. High class-high class students were quick in understanding and they chose the right strategy to solve the problem High class-middle class students tried to solve the problem based upon the high class students' ideas and were better than middle class-middle class students in calculating ability to solve the problem. High class-high class students took the process of resection to make the answer, but high class-middle class students relied on high class students' guessing to reconsider other ways of problem-solving. Middle class-middle class students made variables, without knowing how to use them, and solved the problem illogically. Also the accuracy was relatively low and they had difficulties in understanding the definition.
This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.
In mathematical modeling tasks, where students are exposed to model-eliciting for real and open problems, students are supposed to formulate and use a variety of mathematical skills and tools at hand to achieve feasible and meaningful solutions using appropriate problem solving strategies. In contrast to problem solving activities in conventional math classes, math modeling tasks call for varieties of mathematical ability including mathematical creativity. Mathematical creativity encompasses complex and compound traits. Many researchers suggest the exhaustive list of criterions of mathematical creativity. With regard to the research considering the possibility of enhancing creativity via math modeling instruction, a quantitative scheme to scale and calibrate the creativity was investigated and the assessment of math modeling activity was suggested for practical purposes.
The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.