Intuition in the mathematical problem solving has been stressed the importance with the logic because intuition is the cognition that give significant clue or idea to problem solving. Fischbein classified intuition by the origin; primary intuition and secondary intuition And he said the role of the personal experience and school education. Through these precedent research, we can understand the social influence. This study attempt to investigate social intuition model of Haidt, moral psychologist that has surfaced social property of intuition in terms of the mathematical problem solving. The major suggestions in problem solving and the education of intuition are followed. First, I can find the social property of intuition in the mathematical problem solving. Second, It is possible to make the mathematical problem solving model by transforming the social intuitionist model. Third, the role of teacher is important to give the meaningful experience for intuition to their students. Fourth, for reducing the errors caused by the coerciveness and globality of intuition, we need the education of checking their own intuition. In other words, we need intuition education emphasized on metacognition.
The purpose of this paper is to find role of in and logic in creative problem solving process. Intuition and logic have played an important role in creative problem solving process. Nevertheless, Intuition has been treated less importantly than logic. Therefore, I intend to review the role of intuition, and then the relationship of intuition and logic, and the role of intuition and logic in creative problem solving process. Although intuition gives an important clue in problem solving process, it may sometimes cause an error. This fact gives an idea that intuition and logic have to be harmoniously cultivated. In fact, Intuition and logic have been playing a complementary role in creative problem solving process. A creative learner is regarded as a mathematician of his age. It must be through intuition and logic that he/she solves the problem creatively, just as a mathematician invents the new mathematical fact through unconscious and conscious process. In this respective, teachers also should make every effort to cultivate intuition and logic themselves.
This study is to understand intuition that is the tool of invention and the one factor of the creative thinking in mathematical education. For this, I examine the nature of intuition and the history of research about intuition. And I study the result of research about intuition in cognitive psychological perspectives. This study brings to a focus in informational processing model. Informational processing model is similar to the mathematical problem solving process that is expressed linear process. Recently, parallel distributed processing models try to understand the nature of intuition. But any models cannot adequately explain the nature and the phenomena of illumination of intuition. Some scholars try to examine the intuition in mathematical education. But systematic and practical research is rare. So, I suggest the mathematical educational implications about intuition. Conclusively, it is necessary to systematic concern in intuition and the methods of improvement of intuition in mathematical education.
Intuition has played an important role in process of invention of mathematics and given understanding of mathematical truth and the direction of solution. So, I review about intuition in history of mathematical philosophy and mathematics because we need systematic research about intuition for search of the methods for enhancement of intuition in mathematics education. According to the research of scholars who emphasize intuitive education, intuition is common feature which everybody hold and is not special feature which particular person hold. In addition, intuition is universal ability that can enhance by proper instruction. So, we have to emphasize the importance of the development of intuition and education which emphasize creative thought via intuition.
As intuition is more unreliable than logic or reason, its studies in mathematics and mathematics education have not been done that much. But it has played an important role in the invention and development of mathematics with logic. So, it is necessary to recognize and explore the value of intuition in mathematics education. In this paper, I investigate the function and role of intuition in terms of mathematical learning and problem solving. Especially, I discuss the positive and negative aspects of intuition with its characters. The intuitive acceptance is decided by self-evidence and confidence. In relation to the intuitive acceptance, it is discussed about the pedagogical problems and the role of intuitive thinking in terms of creative problem solving perspectives. Intuition is recognized as an innate ability that all people have. So, we have to concentrate on the mathematics education via intuition and the complementary between intuition and logic. For further research, I suggest the studies for the mathematics education via intuition for students' mathematical development.
Arithmetic education is based not only on concept but also fundamentally on intuition. Pestalozzi understood time, a Kant's transcendental intuition, as numbers, a form of cognition, so that he considered intuition essential in arithmetic education. Pestalozzi and Herbart also recommended the intuitive arithmetic education. Significance of the arithmetic education based on intuition resides in the fact that arithmetic, an expression of nature and the world, is succeeded to modern arithmetic education because numbers, a cornerstone of mathematics, are symbolized as a law of mind reasoning.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.197-215
/
2010
Intuition plays an important role in the mathematical education as well as the process of invention in mathematics. And many mathematics educators became interested in intuition in mathematics education. So we need to analyze the effect of the characters of intuition of elementary students. In this study, the questionnaire and the interview were used. The subjects were 6 grade-103 students in the questionnaire. They were asked to solve the problems in the questionnaire which was designed by the researcher and to describe the reasons why they answered like that. Students are effected directly by the characters of intuition, ie self-evidence, intrinsic certainty, implicitness, etc. And the effect come from intuitive and ordinary experiences and the results of previous learning. In conclusion, we have to be interested in teaching via intuition and to control the effect of the characters of intuition.
The purpose of this thesis is to search the situation of an outbreak of the fallacy and methods of its treatment. We regard intuition as origins of genuine knowledge, but it sometimes raises the fallacy by intrinsic characters of itself. It makes an examination of the fallacy of the sense of sight like an optical illusion to instance that of sense. The sense of sight is an important factor in an intuitive cognition. However, its activity without thinking raises the fallacy of intuition in the process to observe and judge the things. I point out the fallacy of intuition which originates from terms and concepts in mathematical problems. The concept of mean velocity is representative. In this case, students make a mistake which means velocity can be solved by dividing the sum of v$_1$ and v$_2$ into two. The methods which overcome the fallacy of intuition are balance of intuition and logic, overcome of functional fixedness, the development of intuitive models and the development of metacognitive ability.
The purpose of this paper is to research the factors and the effects of immediacy in mathematics teaching and learning and mathematical problem solving. The factors of immediacy are visualization, functional fixedness and representatives. In special, students can apprehend immediately the clues and solution using the visual representation because of its properties of finiteness and concreteness. But the errors sometimes originate from visual representation which come from limitation of the visual representation. It suggests that students have to know conceptual meaning of the visual representation when they use the visual representation. And this phenomenon is the same in functional fixedness and representatives which are the factors of immediacy The methods which overcome the errors of immediacy is that problem solvers notice the limitation of the factors of immediacy and develop the meta-cognitive ability. And it means we have to emphasize the logic and the intuition in mathematical teaching and learning. Clearly, we can't solve all mathematical problems using only either the logic or the intuition.
$Poincar\acute{e}$ is mathematician and the episodes in his mathematical invention process give suggestions to scholars who have interest in how mathematical invention happens. He emphasizes the value of unconscious activity. Furthermore, $Poincar\acute{e}$ points the complementary relation between unconscious activity and conscious activity. Also, $Poincar\acute{e}$ emphasizes the value of intuition and logic. In general, intuition is tool of invention and gives the clue of mathematical problem solving. But logic gives the certainty. $Poincar\acute{e}$ points the complementary relation between intuition and logic at the same reasons. In spite of the importance of relation between intuition and logic, school mathematics emphasized the logic. So students don't reveal and use the intuitive thinking in mathematical problem solving. So, we have to search the methods to use the complementary relation between intuition and logic in mathematics education.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.