• Title/Summary/Keyword: mathematical intelligence

Search Result 206, Processing Time 0.022 seconds

A Study on the Basic Mathematical Competency Levels of Freshmen Students in Radiology Department (방사선과 신입생의 기초 수리능력 수준에 대한 연구)

  • Jang, Hyon Chol;Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • The era of the Fourth Industrial Revolution is increasingly demanding mathematical competencies for virtual reality (VR), artificial intelligence (AI) and the like. In this context, this study intended to identify the basic mathematical competency levels of university freshman students in radiology department and to provide basic data thereon. For this, the diagnostic assessment of basic learning competencies for the domain of mathematics was conducted from June 17, 2019 to June 28, 2019 among 78 freshman students of radiology department at S university and D university. As a result, the university students' overall basic mathematical competency levels were diagnosed to be excellent. However, their levels in the sectors of the geometry and vector and the probability and statistics were diagnosed to be moderate, with the mean scores of 2.61 points and 2.64 points, respectively, which were found to be lower than those of the other sections. As for basic mathematical competency levels according to genders, the levels of male students and female students were diagnosed to be excellent, with the mean scores of 17.48 points and 16.29 points, respectively, showing no statistically significant difference (p>0.05). Given the small number of subjects and regional restriction, there might be some limitations in the generalization of the findings of the present study to all university freshman students and all departments. The above results suggest that it is necessary to implement various programs such as student level-based special lectures for enhancing basic mathematical competencies relating to major in order to improve the basic mathematical competencies of freshman students in radiology department, and that it is necessary to increase the students' mathematical competencies by offering major math courses in the curriculum and applying teaching-learning methods matching students' levels.

Polanyi's Epistemology and the Tacit Dimension in Problem Solving (폴라니의 인식론과 문제해결의 암묵적 차원)

  • Nam, Jin-Young;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.113-130
    • /
    • 2009
  • It can be said that the teaching and learning of mathematical problem solving has been greatly influenced by G. Polya. His heuristics shows down the explicit process of mathematical problem solving in detail. In contrast, Polanyi highlights the implicit dimension of the process. Polanyi's theory can play complementary role with Polya's theory. This study outlined the epistemology of Polanyi and his theory of problem solving. Regarding the knowledge and knowing as a work of the whole mind, Polanyi emphasizes devotion and absorption to the problem at work together with the intelligence and feeling. And the role of teachers are essential in a sense that students can learn implicit knowledge from them. However, our high school students do not seem to take enough time and effort to the problem solving. Nor do they request school teachers' help. According to Polanyi, this attitude can cause a serious problem in teaching and learning of mathematical problem solving.

  • PDF

Exploring the possibility of using ChatGPT in Mathematics Education: Focusing on Student Product and Pre-service Teachers' Discourse Related to Fraction Problems (ChatGPT의 수학교육 활용 가능성 탐색: 분수 문제에 관한 학생의 산출물과 예비교사의 담화 사례를 중심으로)

  • Son, Taekwon
    • Education of Primary School Mathematics
    • /
    • v.26 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In this study, I explored the possibility of using ChatGPT math education. For this purpose, students' problem-solving outputs and conversation data between pre-service teachers and a student were selected as an analysis case. A case was analyzed using ChatGPT and compared with the results of mathematics education experts. The results that ChatGPT analyzed students' problem-solving strategies and mathematical thinking skills were similar to those of math education experts. ChatGPT was able to analyze teacher questions with evaluation criteria, and the results were similar to those of math education experts. ChatGPT could also respond with mathematical theory as a source of evaluation criteria. These results demonstrate the potential of ChatGPT to analyze students' thinking and teachers' practice in mathematics education. However, there are limitations in properly applying the evaluation criteria or providing inaccurate information, so the further review of the derived information is required.

A Study on the Students' Cognition of Chemistry in Science High School by Factor Analysis of Mathematics and Science Achievement (수학·과학 성취도의 요인 분석으로 본 과학고등학교 학생들의 화학 교과에 대한 인식 연구)

  • Shin, Dong-Seon;Choi, Hojun;Kim, Bong Gon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.119-129
    • /
    • 2020
  • For effective teaching-learning activities for students with diverse talents in science high schools, it is important for teachers to understand students' individual differences in perceiving and processing information in the natural world, depending on the students' various talents and subject characteristics. The purpose of this study is to examine the students' cognition of chemistry in science high school through correlations and factor analysis of mathematics/science achievement. In addition, this study attempted to examine the cognition of chemistry subject according to R&E classes. The main participants of the study were freshmen of G science high school (296 students) who entered after three times of curriculum reforms and new admission processes and the students in two other science high schools in Gyeongnam and Ulsan were included. The correlation and factor analysis were conducted by exploratory factor analysis by IBM SPSS Statistics 25 programs. The results of this study were as follows: First, in the correlation analysis between mathematics and science achievement, it was confirmed that the Pearson's coefficient of chemistry showed higher positive correlation coefficient than that of other science subjects. Second, in the factor analysis of mathematics and science achievements, it was found that the factor indicators were divided into two factors as logical-mathematical (mathematics and physics) and naturalistic (life science and earth science). Third, in the factor analysis, it was confirmed that the chemistry is recognized as the subject that requires both logical-mathematical and naturalistic intelligence. Finally, it was confirmed that students' cognitions of chemistry subject were found to differ according to the R&E classes. In other words, the participants of R&E chemistry class, unlike other students, were found to recognize chemistry as the subject that logical-mathematical intelligence is needed.

A Mathematical Analysis on Daily Inventory Clearance Pricing with Consumer's Reference Price

  • Koide, Takeshi;Sandoh, Hiroaki
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • This paper discusses a clearance pricing on daily perishable products considering a reference price of consumers. The daily perishable products are sometimes sold at a discount price before closing time to stimulate demand when the number of unsold products is more than initially envisioned. The discount pricing results both in an increase of the revenue of the day and in a decrease of the disposal cost. The discounting, however, also declines a reference price of consumers which is a mental price and serves as an anchor price to judge if a current sales price is loss or gain for the consumers. An excess discounting decreases the demand for the products sold at a regular price in the future and diminishes long-term profit. This study conducts a mathematical analysis on the clearance pricing problem for a single period with stochastic variations both on demand and on the inventory level at clearance time. The expected profit function especially depends on the response of consumers to the clearing price against their reference prices. A procedure is proposed to derive an optimal clearance price when consumers are loss-neutral. A sufficient condition is shown to obtain an optimal price for loss-averse and loss-seeking consumers by an analogous procedure.

A Modular Based Approach on the Development of AI Math Curriculum Model (인공지능 수학교육과정의 모듈화 접근방법 연구)

  • Baik, Ran
    • Journal of Engineering Education Research
    • /
    • v.24 no.3
    • /
    • pp.50-57
    • /
    • 2021
  • Although the mathematics education process in AI education is a very important issue, little cases are reported in developing effective methods on AI and mathematics education at the university level. The universities cover all fields of mathematics in their curriculums, but they lack in connecting and applying the math knowledge to AI in an efficient manner. Students are hardly interested in taking many math courses and it gets worse for the students in humanities, social sciences and arts. But university education is very slow in adapting to rapidly changing new technologies in the real world. AI is a technology that is changing the paradigm of the century, so every one should be familiar with this technology but it requires fundamental math knowledge. It is not fair for the students to study all math subjects and ride on the AI train. We recognize that three key elements, SW knowledge, mathematical knowledge, and domain knowledge, are required in applying AI technology to the real world problems. This study proposes a modular approach of studying mathematics knowledge while connecting the math to different domain problems using AI techniques. We also show a modular curriculum that is developed for using math for AI-driven autonomous driving.

A Case Analysis for Learning Management Systems that support Individual Students' Mathematics Learning (개별 학습 지원을 위한 수학 플랫폼 LMS 사례 분석)

  • Han, Sang Ji;Kim, Hyung Won;Ko, Ho Kyoung
    • East Asian mathematical journal
    • /
    • v.38 no.2
    • /
    • pp.187-214
    • /
    • 2022
  • This study compares the functions of the Learning Management Systems (LMS) in three widely used Edu-Tech platforms, that support students' individualized learning by using the learning characteristics of the students. The rapid advances in artificial intelligence (AI) are broadening their impacts in the education industry, and play a broad role in supporting student learning. In many countries, online classes have become a norm due to the COVID-19 crisis, and the demand for Edu-Tech in classes has increased rapidly. As a result, many countries, including South Korea, are now preparing and implementing various policy measures to adopt Edu-Tech in the class setting. Therefore, in this study, we analyze and compare the structures and characteristics of the three widely used Edu-Tech platforms that support individualized mathematics learning. In particular, we compare the LMSs of the three platforms by considering the elements such as learning design, learning management, learner analysis, learning result analysis, and student management functions. The results of this study give implications in the future directions to take on how to build Edu-Tech platform models that promote students' individualized mathematics learning in public education.

Design of intelligent computing networks for a two-phase fluid flow with dusty particles hanging above a stretched cylinder

  • Tayyab Zamir;Farooq Ahmed Shah;Muhammad Shoaib;Atta Ullah
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.399-410
    • /
    • 2023
  • This study proposes a novel use of backpropagated Levenberg-Marquardt neural networks based on computational intelligence heuristics to comprehend the examination of hybrid nanoparticles on the flow of dusty liquid via stretched cylinder. A two-phase model is employed in the present work to describe the fluid flow. The use of desulphated nanoparticles of silver and molybdenum suspended in water as base fluid. The mathematical model represented in terms of partial differential equations, Implementing similarity transformationsis model is converted to ordinary differential equations for the analysis . By adjusting the particle mass concentration and curvature parameter, a unique technique is utilized to generate a dataset for the proposed Levenberg-Marquardt neural networks in various nanoparticle circumstances on the flow of dusty liquid via stretched cylinder. The intelligent solver Levenberg-Marquardt neural networks is trained, tested and verified to identify the nanoparticles on the flow of dusty liquid solution for various situations. The Levenberg-Marquardt neural networks approach is applied for the solution of the hybrid nanoparticles on the flow of dusty liquid via stretched cylinder model. It is validated by comparison with the standard solution, regression analysis, histograms, and absolute error analysis. Strong agreement between proposed results and reference solutions as well as accuracy provide an evidence of the framework's validity.

A comparative study on the external & internal structure of mathematics curriculum between Korea and Japan : Focusing on the aspects of recent revisions (한·일 수학과 교육과정의 외·내적 체재 비교 분석 : 직전 교육과정과의 변화를 중심으로)

  • Kwon, Oh Nam;Lee, Kyungwon;Lee, Ahran;Han, Chaereen
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.187-223
    • /
    • 2019
  • This study aims to investigate the aspects of revision in the external and internal structure of curriculum and documentation in Korea and Japan and to propose the direction and task to enhance the current framework of the national curriculum. Japan has been selected for comparison in that it explicitly prepared social changes such as the dramatic evolution of artificial intelligence and population aging in its new curriculum. Therefore, various aspects of revision were analyzed the 2009 & 2015 revised mathematics curriculum of Korea and the 2008 & 2017 mathematics curriculum of Japan respectively in the elementary, middle, and high school grade bands. Then, the differences between the two countries were identified through comparison. First, the structure of the mathematics curriculum in Japan was connected with the general guidelines more tightly than Korea, and the external structure of the mathematics curriculum stayed consistently after the revision. Second, contrary to Korea, which pursued the appropriateness and reduction of mathematical content, Japanese mathematics curriculum has been pursuing detailed contents both quantitatively and qualitatively. Lastly, Japan emphasized statistical problem-solving ability. Based on this, we suggested considering of consistency in the structure curriculum documentation, detailing contents of the curriculum, and strengthening of statistical education.

An Overview on Importance of Writing in Mathematics Education (수학교육에서 글쓰기의 중요성에 관한 소고)

  • Kim, Jeonghyeon;Choi-Koh, Sangsook
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.591-614
    • /
    • 2023
  • For a long time, mathematics education institutions such as NCTM(National Council of Teachers of Mathematics) have emphasized the essential role of writing, and recent surveys by the Ministry of Education report a decline in foundational academic skills in the post-COVID19 period. The purpose of this study is to redefine the significance of mathematics writing in mathematics education, focusing on competencies highlighted in the field, particularly in the areas of problem-solving, communication, and reasoning. The research findings indicate that writing in problem-solving enhances cognitive organization, fostering the ability to grasp concepts and methods. Writing in communication builds confidence through the meta-cognitive process, and writing in inference allows self-awareness of step-by-step identification of areas lacking understanding. Particularly in the future society where artificial intelligence(AI) is utilized, changes in the learning environment necessitate research for the establishment of authenticity judgment through writing and the cultivation of a proper writing culture.