Journal of Elementary Mathematics Education in Korea
/
v.16
no.1
/
pp.1-19
/
2012
Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.
Across the world, there is a movement to incorporate computational thinking(CT) into school curricula, and math is at the heart of this movement. This paper reviewed the meanings of CT based on the point of view of Jeanette Wing, and the trend of domestic and international studies that incorporated CT into the field of mathematics education was analyzed to provide implications for mathematics education and future research. Results indicated that the meaning of CT, defined by mainly computer educators, varied in their operationalization of CT. Although CT and mathematical thinking generally have common points that are oriented toward problem solving, there were differences in the way of abstraction that is central to the two thinking processes. The experimental studies on CT in the field of mathematics education focused mainly on the development of students' cognitive capacities and affective domains through programming(coding). Furthermore, the previous studies were mainly conducted on students in school, and the studies conducted in the context of higher education, including pre-service and in-service teachers, were insufficient. Implications for mathematics teacher educators and teacher education as well as the relationship between CT and mathematical thinking are discussed.
In this study, the instrument of mathematical creative problem solving ability test were considered the differences between Korean and American sixth grade students in mathematical creativity ability and mathematical thinking ability. The instrument consists of 9 items. The participants for the study were 212 Korean and 148 American students. SPSS were carried out to verify the validities and reliability. Reliabilities(Cronbach ${\alpha}$) in mathematical creativity ability is 0.9047 and in mathematical thinking ability is 0.9299 which were satisfied internal validity evaluation on the test items. Internal validity were analyzed by BIGSTEPS based on Rasch's 1-parameter item response model. The results of this study can serve as a foundation for understanding the Korean and American students differences in mathematical creativity ability and mathematical thinking ability. Especially we get the some informations on mathematical creativity ability for American's fifth grade to seventh grade students.
The purpose of this study is to resolve misunderstanding for centroid of a triangle and to clarify several logical problems in finding the centroid of a Polygon. The conclusions are the followings. For a triangle, the misunderstanding that the centroid of a figure is the intersection of two lines that divide the area of the figure into two equal part is more easily accepted caused by the misinterpretation of a median. Concerning the equilibrium of a triangle, the median of it has the meaning that it makes the torques of both regions it divides to be equal, not the areas. The errors in students' strategies aiming for finding the centroid of a polygon fundamentally lie in the lack of their understanding of the mathematical investigation of physical phenomena. To investigate physical phenomena mathematically, we should abstract some mathematical principals from the phenomena which can provide the appropriate explanations for then. This abstraction is crucial because the development of mathematical theories for physical phenomena begins with those principals. However, the students weren't conscious of this process. Generally, we use the law of lever, the reciprocal proportionality of mass and distance, to explain the equilibrium of an object. But some self-evident principles in symmetry may also be logically sufficient to fix the centroid of a polygon. One of the studies by Archimedes, the famous ancient Greek mathematician, gives a solution to this rather awkward situation. He had developed the general theory of a centroid from a few axioms which concerns symmetry. But it should be noticed that these axioms are achieved from the abstraction of physical phenomena as well.
Even though geometry is an important part basic to mathematics, studies on the program designs and teaching strategies of geometry are insufficient. The aims of this study are to propose the model of program design for autonomous learners taking their characteristics of the mathematically gifted into consideration. The core of teaching materials are analytic geometry and projective geometry. And the new teaching strategy will introduce three steps ; a draft strategies step(problem presentation, problem solving), a supportive strategies step(abstraction of a mathematical concept, mathematical induction, and extension), a transference strategies step to teaching strategy suitable for mathematically gifted. As a result, this study will suggest the effective methods of geometry teaching for the mathematically gifted.
The purpose of this study was to investigate characteristics of mathematically gifted high school students' thinking in design activities using GrafEq. Eight mathematically gifted high school students, who already learned graphs of functions and inequalities necessary for design activities, were selected to work in pairs in our experiment. Results indicate that logical thinking and mathematical abstraction, intuitive and structural insights, flexible thinking, divergent thinking and originality, generalization and inductive reasoning emerged in the design activities. Nonetheless, fine-grained analysis of their mathematical activities also implies that teachers for gifted students need to emphasize both geometric and algebraic aspects of mathematical subjects, especially, algebraic expressions, and the tasks for the students are to be rich enough to provide a variety of ways to simplify the expressions.
Journal of Elementary Mathematics Education in Korea
/
v.1
no.1
/
pp.87-98
/
1997
A practice is classified into the practice as a content and the practice as a method. The former means that the practical nature of mathematical knowledge itself should be a content of mathematics and the latter means that one should teach the mathematical knowledge in such a way as the practical nature is not damaged. The practical nature of mathematics means mathematician's activity as it is actually done. Activities of the mathematician are not only discovering strict proofs or building axiomatic system but informal thinking activities such as generalization, analogy, abstraction, induction etc. In this study, it is found that the most instructive ones for the future users of mathematics are such practice as content. For the practice as a method, students might learn, by becoming apprentice mathematicians, to do what master mathematicians do in their everyday practice. Classrooms are cultural milieux and microsoms of mathematical culture in which there are sets of beliefs and values that are perpetuated by the day-to-day practices and rituals of the cultures. Therefore, the students' sense of ‘what mathematics is really about’ is shaped by the culture of school mathematics. In turn, the sense of what mathematics is really all about determines how the students use the mathematics they have learned. In this sense, the practice on which classroom instruction might be modelled is that of mathematicians at work. To learn mathematics is to enter into an ongoing conversation conducted between practitioners who share common language. So students should experience mathematics in a way similar to the way mathematicians live it. It implies a view of mathematics classrooms as a places in which classroom activity is directed not simply toward the acquisition of the content of mathematics in the form of concepts and procedures but rather toward the individual and collaborative practice of mathematical thinking.
Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.
Positive attitude toward mathematics is gaining bigger recognition as an important contributing factor to mathematical ability. As a strategy for strengthening affective domain and betterment of mathematics teaching and loaming, classifying students by their causes for liking or disliking mathematics can be an effective way In this study the author tried to devise methods to classify students by their types of math disliking and investigate correlations between mathematical achievements and these math-disliking types from a sample group of 8th graders. To identify the types of reasons why 8th graders dislike mathematics, a questionnaire with 30 items was made firstly. Then by applying the 'Factor analysis' of SPSS, the 30 items were divided into five partitions. Through abstraction of each partition, five math-disliking types, 'Competences', 'Basics', 'Confidences', 'Usefulness', and 'Teachers' were defined. They are expected to help teachers for describing each student's tendency of math-disliking. Further, correlation coefficients between mathematical achievements and each of the five math-disliking type were investigated against 4 groups which were made from sample group by the discrimination of gender and two levels (high and low) of mathematical achievements in cognitive area. As results, the following facts were found. (i) The trends of correlations between cognitive achievement and the five math disliking types were different across the 4 groups at statistically meaningful degrees. (ii) Most of the male students who had math-disliking types were proved to be in the low achievement level. But for the female students, only 50% of students who had math-disliking types were in the low achievement level. (iii) Compared to male students, higher portion of female students had math-disliking types despite their high achievement in cognitive area.
One of the main features of the 7th revised national curriculum is the implementation of a 'Differentiated Curriculum'. Differentiated Curriculum is often interpreted as meaning the same as 'tracking' or 'ability grouping' in western countries. In the 7th revised curriculum, mathematics is organized and implemented by 'Level-Based Differentiated Curriculum'. To develop mathematics textbooks and teaching-and-learning materials for Differentiated Curriculum, the ideas of 'Enriched and Supplemental Differentiated Curriculum'need to be applied, that is, to provide advanced contents for fast learners, and plain contents for slow learners. Level Based Differentiated Curriculum could be implemented by ability grouping either between classes or within classes. According to these two exemplary models, the implementation models for supplemental course and enriched course are determined. The contents for supplemental course are comprised of minimal essential elements selected from the standard course at a decreased level of complexity and abstraction. The contents of enriched courses are focused on various applications of mathematical knowledge in the real world. Special remedy course will be offered to extremely underachieved students, The principles of developing teaching-and-learning material for special remedy course were obtained from the histo-genetic principle, progressive mathematizing principle, and constructivism.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.