• Title/Summary/Keyword: math problem solving

Search Result 199, Processing Time 0.026 seconds

Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses (이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발)

  • 김인수;고상숙;박승재;김영진
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

Elementary school students' Problem solving process on Problem-Based Learning Approach - Focused on drawing graphs (문제중심학습(PBL)에서 초등학생들의 문제해결과정과 의사소통 -비율그래프를 중심으로)

  • Jang, Eunha;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.193-209
    • /
    • 2013
  • This study was designed to identify how teachers and students solve problems and communicate with each other during the course of study through application of PBL questions that can be utilized in math ratio and graph sections of the 6th-grade elementary school curriculum in class. Therefore we haved figure it out that through pbl class student acquired a propound knowledge in math and showed self-directed learning through various communication activities, and that they finally showed positive attitude and confidence in this subject.

Examining SENKs' and Teachers' Recognition about Mathematics Teaching and Learning (탈북학생과 지도교사의 수학 교수·학습 인식 조사)

  • Na, Gwi-soo;Park, Kyung-mee;Park, Young-eun
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • SENKs (Students who Emigrated from North Korea to South Korea) are exposed to the general problem of Su-Po-Ja(mathematics give-uppers) as well as their own difficulty in learning mathematics. In this study, we conducted the FGI (focus group interview) in order to examine the recognition on mathematics teaching and learning in South Korea with 6 SENKs and 3 teachers who teach the SENKs. As a result, it was found that SENKs' had difficulties in understanding math because of the differences in math terminology used in South and that in North Korea, the unfamiliar problem situation used in math lesson, and the shortage of time for solving math problem. And the teachers reported that they had difficulties in teaching great deal of basic math, SENKs' weak will to learn math, and SENKs' lack of understanding about problem situation because of the inexperience about culture and society in South Korea.

The Impact of Children's Understanding of Fractions on Problem Solving (분수의 하위개념 이해가 문제해결에 미치는 영향)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.235-263
    • /
    • 2009
  • The purpose of the study was to investigate the influence of children's understanding of fractions in mathematics problem solving. Kieren has claimed that the concept of fractions is not a single construct, but consists of several interrelated subconstructs(i.e., part-whole, ratio, operator, quotient and measure). Later on, in the early 1980s, Behr et al. built on Kieren's conceptualization and suggested a theoretical model linking the five subconstructs of fractions to the operations of fractions, fraction equivalence and problem solving. In the present study we utilized this theoretical model as a reference to investigate children's understanding of fractions. The case study has been conducted with 6 children consisted of 4th to 5th graders to detect how they understand factions, and how their understanding influence problem solving of subconstructs, operations of fractions and equivalence. Children's understanding of fractions was categorized into "part-whole", "ratio", "operator", "quotient", "measure" and "result of operations". Most children solved the problems based on their conceptual structure of fractions. However, we could not find the particular relationships between children's understanding of fractions and fraction operations or fraction equivalence, while children's understanding of fractions significantly influences their solutions to the problems of five subconstructs of fractions. We suggested that the focus of teaching should be on the concept of fractions and the meaning of each operations of fractions rather than computational algorithm of fractions.

  • PDF

교과서에 제시된 반성활동의 문제점 및 그 방안

  • Yoon, Dae-Won;Kim, Dong-Keun
    • East Asian mathematical journal
    • /
    • v.27 no.2
    • /
    • pp.101-115
    • /
    • 2011
  • Recently, for solving a math problem, and I reflect back, so much emphasis on activities which reflect the activities conducted in schools is necessary to look for. In this study, the 7th Mathematics Curriculum textbooks (10 - a, b) and 7th in mathematics and modification of curriculum textbooks (math) in the reflection type of activities that explore the resulting problems and the measures we discuss are. Therefore, textbooks reflect the type of activities were analyzed before and thinking strategies, and we will examine various types of reflective activities.

The Study on the Influence that the Understanding Degree about the Sentence Stated Math. Problems Reach the Extension of the Problem Solving Capacity. - Focusing on the Unit of Equation and Inequality in Middle School - (문장제에 대한 이해정도가 문제해결력 신장에 미치는 영향에 대한 연구 -중학교 방정식과 부등식 단원을 중심으로-)

  • 지재근;오세열
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.189-200
    • /
    • 2000
  • The purpose of this thesis is that the students understand the sentence stated math problems closely related to the real life and adapted the right solving strategies try to find the solution to a problem. The following research problem were proposed. 1. How repeated thinking lessons develop the understanding of problems and influence the usage of correct problem solving strategies and extensions of problem solving. 2. There are how much differences of achievement for each type of sentence stated problems by using comparative analysis of upper class, intermediate class, and lower class for each level between the experimental and comparative classes. In order to conduct this research the classes were divided into three different level - upper class, intermediate class and lower class. Each level include an experimental class and a comparative class. The two classes (experimental class and comparative class) of the same level were tested on the basis of class division record with the experimental class repeated learning papers for two weeks were used to guide the fixed thinking algorism for each sentence stated math problems. Eight common problems were chosen from a variety of textbooks : number calculation problems, velocity-distance-time problems, the density of a mixture, benefit problems, distribution problems, problems about working, ratio problems, the length of a figure problems. After conducting this research experiment The differences in achievement level between the experimental class and comparative class, were compared and analyzed through achievement tests made from the achievement test papers with seven problems, which were worth seventy points (total score). The conclusions of this thesis are as follows: Firstly, leaning activities through the usage of repeated learning papers for each level class produce an even development of achievement level especially in the case of the upper class learners, they have particular differences (between experimental class and comparative class) compared to the intermediate level and lower classes. Secondly, according to the analysis about achievement development each problems, learners easily accept the strategies of solution through the formula setting up to the problem of velocity -distance-time, and to the density of the mixture they adapted the picture drawing strategies interestingly, However each situation requires a variety of appropriate solution strategies. Teachers will have to employ other interesting solution strategies which relate to real life.

  • PDF

A participatory action research on the developing and applying mathematical situation based problem solving instruction model (상황중심의 문제해결모형을 적용한 수학 수업의 실행연구)

  • Kim, Nam-Gyun;Park, Young-Eun
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.429-459
    • /
    • 2009
  • The purpose of this study was to help the students deepen their mathematical understanding and practitioner improve her mathematics lessons. The teacher-researcher developed mathematical situation based problem solving instruction model which was modified from PBL(Problem Based Learning instruction model). Three lessons were performed in the cycle of reflection, plan, and action. As a result of performance, reflective knowledges were noted as followed points; students' mathematical understanding, mathematical situation based problem solving instruction model, improvement of mathematics teachers.

  • PDF

Analyzing Korean Math Word Problem Data Classification Difficulty Level Using the KoEPT Model (KoEPT 기반 한국어 수학 문장제 문제 데이터 분류 난도 분석)

  • Rhim, Sangkyu;Ki, Kyung Seo;Kim, Bugeun;Gweon, Gahgene
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.315-324
    • /
    • 2022
  • In this paper, we propose KoEPT, a Transformer-based generative model for automatic math word problems solving. A math word problem written in human language which describes everyday situations in a mathematical form. Math word problem solving requires an artificial intelligence model to understand the implied logic within the problem. Therefore, it is being studied variously across the world to improve the language understanding ability of artificial intelligence. In the case of the Korean language, studies so far have mainly attempted to solve problems by classifying them into templates, but there is a limitation in that these techniques are difficult to apply to datasets with high classification difficulty. To solve this problem, this paper used the KoEPT model which uses 'expression' tokens and pointer networks. To measure the performance of this model, the classification difficulty scores of IL, CC, and ALG514, which are existing Korean mathematical sentence problem datasets, were measured, and then the performance of KoEPT was evaluated using 5-fold cross-validation. For the Korean datasets used for evaluation, KoEPT obtained the state-of-the-art(SOTA) performance with 99.1% in CC, which is comparable to the existing SOTA performance, and 89.3% and 80.5% in IL and ALG514, respectively. In addition, as a result of evaluation, KoEPT showed a relatively improved performance for datasets with high classification difficulty. Through an ablation study, we uncovered that the use of the 'expression' tokens and pointer networks contributed to KoEPT's state of being less affected by classification difficulty while obtaining good performance.

A Study on the Mathematics Education via Intuition (직관을 통한 수학교육에 관한 고찰)

  • LEE, Daehyun
    • Journal for History of Mathematics
    • /
    • v.28 no.5
    • /
    • pp.263-278
    • /
    • 2015
  • As intuition is more unreliable than logic or reason, its studies in mathematics and mathematics education have not been done that much. But it has played an important role in the invention and development of mathematics with logic. So, it is necessary to recognize and explore the value of intuition in mathematics education. In this paper, I investigate the function and role of intuition in terms of mathematical learning and problem solving. Especially, I discuss the positive and negative aspects of intuition with its characters. The intuitive acceptance is decided by self-evidence and confidence. In relation to the intuitive acceptance, it is discussed about the pedagogical problems and the role of intuitive thinking in terms of creative problem solving perspectives. Intuition is recognized as an innate ability that all people have. So, we have to concentrate on the mathematics education via intuition and the complementary between intuition and logic. For further research, I suggest the studies for the mathematics education via intuition for students' mathematical development.

A Study on Problem-solving Using Combinational Proof (조합적 논증을 이용한 문제해결에 대한 연구)

  • Yoon Dae-Won;Kim Eun-Ju;Lyou Ik-Seung
    • Communications of Mathematical Education
    • /
    • v.20 no.3 s.27
    • /
    • pp.373-389
    • /
    • 2006
  • The purpose of this study is to compare the way of proving using combinational proof with the way of proving presented in the existing math textbook in the proof of combinational equation and to classify the problem-solving into some categories using combinational proof in combinational equation. Corresponding with these, this study suggests the application of combinational equation using combinational proof and the fundamental material to develop material for advanced study.

  • PDF