• 제목/요약/키워드: materials simulation

검색결과 3,348건 처리시간 0.032초

Simulation of outgassing effects of vacuum materials on vacuum characteristics

  • Kim, Hyung-Taek;Kim, Young-Suk
    • 반도체디스플레이기술학회지
    • /
    • 제8권1호
    • /
    • pp.7-12
    • /
    • 2009
  • The outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for these vacuum systems were suggested based on the simulation results. The baking-out effects of the modeled systems and materials on the performance of the vacuum system were also analyzed. The simulation predicted that the overall outgassing effect was more significant in the TMP system than in the DP system and that the utilization of a booster pump has a greater effect on the evacuation time than on the ultimate pressure.

  • PDF

Transparent OLED Lighting Panel Design Using Two-Dimensional OLED Circuit Modeling

  • Han, Jun-Han;Moon, Jaehyun;Cho, Doo-Hee;Shin, Jin-Wook;Joo, Chul Woong;Hwang, Joohyun;Huh, Jin Woo;Chu, Hye Yong;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.559-565
    • /
    • 2013
  • In this work, we develop a simulation method to predict a two-dimensional luminance distribution method using a circuitry simulation. Based on the simulation results, we successfully fabricate large area ($90mm{\times}90mm$) transparent organic light-emitting diode panels with high luminance uniformity.

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong;Zhang, Chi;Yang, Zhigang;Zhao, Jijun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.569-575
    • /
    • 2017
  • One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.

Analysis of High Vacuum System Based on the Applications of Vacuum Materials

  • Kim, Hyung-Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.334-338
    • /
    • 2013
  • In this study, the outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for these vacuum systems were suggested based on the simulation results. The baking-out effects of the modeled systems and materials on the performance of the vacuum system were also analyzed. The simulation predicted that the overall outgassing effect was more significant in the turbomolecular pump system than in the diffusion pump system and that the utilization of a booster pump has a greater effect on the evacuation time than on the ultimate pressure.

이방성 재료의 충격거동에 관한 시뮬레이션 (Impact Behavior Simulation of Anisotropic Materials)

  • 안국찬;정대식;김봉환
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.38-46
    • /
    • 2011
  • A study was performed to investigate the dynamic behaviors of fiber-reinforced composite materials subjected to transversely low-velocity impact. For this purpose, the simulation of modified beam finite element based on higher order beam theory for two(isotropic and anisotropic) materials is carried out according to the changes of material property, stacking sequence, geometric dimension and impact velocity of steel ball, etc. Main composite materials for simulation are composed of $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_s$ and $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_s$ stacking sequences. The effectiveness of this simulation for qualitative and quantitative evaluations in composite materials subjected to foreign object impact was established.

선박 기관시스템 보조기기의 상태기반 고장진단/예측을 위한 고장 모사 데이터베이스 구축 (A Study on the Development of a Failure Simulation Database for Condition Based Maintenance of Marine Engine System Auxiliary Equipment)

  • 김정영;이태현;이송호;이종직;신동민;이원균;김용진
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.200-206
    • /
    • 2022
  • This study is to develop database by an experimental method for the development of condition based maintenance for auxiliary equipment in marine engine systems. Existing ships have been performing regular maintenance, so the actual measurement data development is very incomplete. Therefore, it is best to develop a database on land tests. In this paper, a database developed by an experimental method is presented. First, failure case analysis and reliability analysis were performed to select a failure mode. For the failure simulation test, a test bed for land testing was developed. The failure simulation test was performed based on the failure simulation scenario in which the failure simulation test plan was defined. A 1.5TB failure simulation database has been developed, and it is expected to serve as a basis for ship failure diagnosis and prediction algorithm model development.

볼 밀의 분쇄장에서 DEM 시뮬레이션을 통한 마찰계수 영향 (Effect of Friction Coefficient from DEM Simulation in Grinding Zone of the Ball Mill)

  • 자갈사이항 바트체첵;보르 암갈란;오란치멕 쿨란;이재현;최희규
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.286-295
    • /
    • 2021
  • This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.

2상 복합재료에 있어서 percolation구조의 2차원 컴퓨터 시뮬레이션 (Two-dimensional Computer Simulation of Percolation Structure in Two-Phase Composites)

  • 신순기;이유실;이준희
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.929-935
    • /
    • 2001
  • Two-dimensional computer simulations were conducted on percolation structure in which second phases of various aspect ratios were arranged in a lattice (matrix). The second phases were randomly arranged in an array with two different computational programs; one prohibiting an overlap among second phases and the other allowing the overlap. From the simulation prohibiting the overlap, it was predicted that a complete path was formed at less amounts of the second phase with higher aspect ratios. In the simulation allowing the overlap, a complete path throughout the array was formed by arranging the second phase of an aspect ratio of 1. 5, 20, 100 with less than 59%, 43%, 19%, 4% in the array, respectively.

  • PDF

New Monte-Carlo based simulation program suitable for low-energy ions irradiation in pure materials

  • Ghadeer H. Al-Malkawi;Al-Montaser Bellah A. Al-Ajlony;Khaled F. Al-Shboul;Ahmed Hassanein
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1287-1299
    • /
    • 2023
  • A new Monte-Carlo-based computer program (RDS-BASIC) is developed to simulate the transport of energetic ions in pure matter. This computer program is utilizing an algorithm that uses detailed numerical solutions for the classical scattering integral for evaluating the outcomes of the binary collision processes. This approach is adopted by several prominent similar simulation programs and is known to provide results with higher accuracy compared to other approaches that use approximations to shorten the simulation time. Furthermore, RDS-BASIC simulation program contains special methods to reduce the displacement energy threshold of surface atoms. This implementation is found essential for accurate simulation results for sputtering yield in the case of very low energy ions irradiation (near sputtering energy threshold) and also successfully solve the problem of simultaneously obtaining an acceptable number of atomic displacements per incident ions. Results of our simulation for several irradiation systems are presented and compared with their respective TRIM (SRIM-2013) and the state-of-the-art SDTrimSP simulation results. Our sputtering simulation results were also compared with available experimental data. The simulation execution time for these different simulation programs has also been compared.