Browse > Article
http://dx.doi.org/10.1016/j.net.2016.10.006

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel  

Wang, Chenchong (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)
Zhang, Chi (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)
Yang, Zhigang (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)
Zhao, Jijun (State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology)
Publication Information
Nuclear Engineering and Technology / v.49, no.3, 2017 , pp. 569-575 More about this Journal
Abstract
One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.
Keywords
High Temperature; Irradiation; Multiscale Simulation; Yield Strength;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Z.X. Xia, C. Zhang, H. Lan, Z.Q. Liu, Z.G. Yang, Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels, Mater. Lett. 65 (2011) 937-939.   DOI
2 M.N. Babu, G. Sasikala, B.S. Dutt, S. Venugopal, A.K. Bhaduri, T. Jayakumar, Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures, Nucl. Eng. Des. 269 (2014) 103-107.   DOI
3 W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at $550^{\circ}C$, Nucl. Eng. Technol. 48 (2016) 518-524.   DOI
4 T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol. 48 (2016) 572-594.   DOI
5 L. Huang, X. Hu, W. Yan, W. Sha, F. Xiao, Y. Shan, K. Yang, Laves-phase in the China low activation martensitic steel after long-term creep exposure, Mater. Des. 63 (2014) 333-335.   DOI
6 W.B. Liu, C. Zhang, Z.X. Xia, Z.G. Yang, P.H. Wang, J.M. Chen, Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment, Mater. Sci. Eng. A 568 (2013) 176-183.   DOI
7 G.F. Wang, A. Strachan, C. Tahir, W.A. Goddard, Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum, Model. Simul. Mat. Sci. Eng. 12 (2004) S371-S389.   DOI
8 F.R.N. Nabarro, Fifty-year study of the PeierlseNabarro stress, Mater. Sci. Eng. A 234-236 (1997) 67-76.   DOI
9 N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004) 801-806.   DOI
10 Y.Z. Zhu, S.Z. Wang, B.L. Li, Z.M. Yin, Q. Wan, P. Liu, Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy, Mater. Des. 55 (2014) 456-462.   DOI
11 M.F. Ashby, On the Orowan Stress, MIT Press, Cambridge, MA, 1969.
12 J. Friedel, Dislocations, Pergamon Press, New York, 1964.
13 H. Meckings, U.F. Kocks, Kinetics of flow and strainhardening, Acta Metallurgica 29 (1981) 1865-1875.   DOI
14 D. Terentyev, X. Xiao, A. Dubinko, A. Bakaeva, H. Duan, Dislocation-mediated strain hardening in tungsten: thermomechanical plasticity theory and experimental validation, J. Mech. Phys. Solids 85 (2015) 1-15.
15 J. Kang, T. Ingendahl, W. Bleck, A constitutive model for the tensile behaviour of TWIP steels: composition and temperature dependencies, Mater. Des. 90 (2016) 340-349.   DOI
16 O. Bouaziz, Revised storage and dynamic recovery of dislocation density evolution law: toward a generalized KockseMecking model of strain-hardening, Adv. Eng. Mater. 14 (2012) 759-761.   DOI
17 J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater. 61 (2013) 4939-4952.   DOI
18 S.J. Zinkle, Y. Matsukawa, Observation and analysis of defect cluster production and interactions with dislocations, J. Nucl. Mater. 329-333 (2004) 88-96.   DOI
19 C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Multi-scale simulation of hydrogen influenced critical stress intensity in high Co-Ni secondary hardening steel, Mater. Des. 87 (2015) 501-506.   DOI
20 A.K. Seeger, On the theory of radiation damage and radiation hardening, Second UN Conference on Peaceful Uses of Atomic Energy, United Nations, New York, 1958.
21 C. Wang, C. Zhang, Z. Yang, Austenite layer and precipitation in high Co-Ni maraging steel, Micron 67 (2014) 112-116.   DOI
22 P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, Q. Zhan, Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel, J. Alloys Compd. 579 (2013) 599-605.   DOI
23 R. Schaublin, P. Spatig, M. Victoria, Microstructure assessment of the low activation ferritic/martensitic steel F82H, J. Nucl. Mater. 258 (1998) 1178-1182.
24 Y. Watanabe, K. Morishita, T. Nakasuji,M. Ando, H. Tanigawa, Helium effects on microstructural change inRAFMsteel under irradiation: reaction rate theory modeling, Nucl. Instrum. Methods Phys. Res. B 352 (2015) 115-120.   DOI
25 K.W. Tupholme, D. Dulieu, G.J. Butterworth, The effect of aging on the properties and structures of low activation martensitic 9 and 11-percent Cr, W, V stainless-steel, J. Nucl. Mater. 179 (1991) 684-688.
26 X. Li, S. Schonecker, E. Simon, L. Bergqvist, H. Zhang, L. Szunyogh, J. Zhao, B. Johansson, L. Vitos, Tensile straininduced softening of iron at high temperature, Sci. Rep. 5 (2015) 16654.   DOI
27 R. Lowrie, A.M. Gonas, Single-crystal elastic properties of tungsten from 24 degree to 1800 degree, J. Appl. Phys. 38 (1967) 4505.   DOI
28 S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, Z.K. Liu, Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation, J. Phys. Condens. Matter. 24 (2012) 155402.   DOI
29 C.W. Lee, A. Chernatynskiy, P. Shukla, R.E. Stoller, S.B. Sinnott, S.R. Phillpot, Effect of pores and He bubbles on the thermal transport properties of $UO_2$ by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259.   DOI
30 Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun, Phase-field simulations of intragranular fission gas bubble evolution in $UO_2$ under post-irradiation thermal annealing, Nucl. Instrum. Methods Phys. Res. B 303 (2013) 62-67.   DOI
31 Y. Yu, X. He, F. Luo, L. Guo, Rate theory modeling of dislocation loops in RAFM steel under helium ion irradiation and comparison with experiments, Comp. Mater. Sci. 110 (2015) 34-38.   DOI
32 P.C. Millett, M. Tonks, Phase-field simulations of gas density within bubbles in metals under irradiation, Comp. Mater. Sci. 50 (2011) 2044-2050.   DOI
33 K.L. Murty, Role and significance of source hardening in radiation embrittlement of iron and ferritic steels, J. Nucl. Mater. 270 (1999) 115-128.   DOI
34 A. Abhishek, M. Warrier, R. Ganesh, A. Caro, Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations, J. Nucl. Mater. 472 (2016) 82-88.   DOI
35 E. Nes, Recovery revisited, Acta Metall. Mater. 43 (1995) 2189-2207.   DOI
36 H. Lim, C.C. Battaile, J.D. Carroll, B.L. Boyce, C.R. Weinberger, A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity, J. Mech. Phys. Solids 74 (2015) 80-96.   DOI
37 A. Dunn, R. Dingreville, E. Martinez, L. Capolungo, Identification of dominant damage accumulation processes at grain boundaries during irradiation in nanocrystalline ${\alpha}$-Fe: a statistical study, Acta Mater. 110 (2016) 306-323.   DOI
38 N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium, Mater. Lett. 58 (2004) 39-43.   DOI
39 E. Shafiei, High strain rate behavior of alloy 800H at high temperatures, J. Nucl. Mater. 473 (2016) 1-5.   DOI
40 R.J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, C. Petersen, M.A. Sokolov, P. Spatig, J.W. Rensman, Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications, J. Nucl. Mater. 386-388 (2009) 411-417.   DOI
41 N.M. Ghoniem, G. Po, S. Sharafat, Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design, J. Nucl. Mater. 441 (2013) 704-712.   DOI
42 E.Wakai, M. Ando, T. Sawai, H. Tanigawa, T. Taguchi, R.E. Stoller, T. Yamamoto, Y. Kato, F. Takada, Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons, J. Nucl. Mater. 367-370 (2007) 74-80.   DOI