• Title/Summary/Keyword: material test

Search Result 10,021, Processing Time 0.037 seconds

Subcutaneous Toxicity Study of Saposhnikovia divaricata (Turcz.) Schischk in Rats (랫드에서 방풍, Saposhnikovia divaricata (Turcz.) Schischk의 피하투여 독성에 대한 연구)

  • 이영순;조성대;안남식;정지원;양세란;박준석;박기수;홍인선;서민수
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2003
  • To evaluate influence of Saposhnikovia divaricata (Turcz.) Schischk extract on rat, Saposhnikovia divaricata (Turcz.) Schischk extract was diluted with 0.9% saline (100 mg/ml/kg, 10 mg/ml/kg, and 1 mg/ml/kg, respectively), and each of diluted test material extract was daily treated subcutaneously for 4 weeks and single-treated subcutaneously for 2 weeks. There were no significances in body weight analysis, urinary analysis, and ophthalmological test. However, in serum biochemical analysis and hematological analysis, we found some significances in high and middle dose group compared with control group. These significances in serum biochemical analysis and hematological analysis may be not induced by test material, because it was not found to be significant from control group in histopathological examination. Therefore, it was concluded that NOEL (No Observed Effect Level) of test material extract may be higher than all treatment doses used in this study, and Saposhnikovia divaricata (Turcz.) Schischk extract may be a non-toxic material.

Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test (소형펀치 시험과 역해석에 의한 재료의 유동응력 결정)

  • Cheon, Jin-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

Development of Jacket Compounds for URD Power Cables (지중 케이블용 외피 컴파운드 개발)

  • Han, Jae-Hong;Kim, Ju-Yong;Kim, Dong-Myung;Song, Il-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.7-10
    • /
    • 2002
  • In this study, polyolefin compounds were developed and evaluated for replacing a jacket material of URD power cables. The characteristics of compounds were investigated by water vapor transmission (WVT) test and mechanical test. In WVT test, all polyolefin compounds showed the superior water resistance to conventional PVC. The molecular structure and density of polyolefin play an important role in WVT. Also, polyolefin compounds showed the suitable characteristics in mechanical test. Especially, polyolefin compounds having linear molecules showed the superior characteristics to LDPE ones. From this study, it can be considered that polyolefin compounds may be suitable to jacket material for URD power cables.

  • PDF

The Mechanical Properties of Working Clothes Materials Considering Industrial Settings (산업현장을 고려한 작업복 소재의 역학적 특성 연구)

  • Bae, Hyun Sook
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.140-151
    • /
    • 2013
  • In order to investigate the mechanical properties of working clothes materials considering industrial settings, the test weaving materials were compared with the existing materials depending on the season. The material design of the test fabrics were changed through fineness, composition, density of materials then subsequently treated with functional finish. As a result of evaluation of the forms according to KES-FB system, Koshi was deduced, and Numeri and Fukurami were increased. Thereby, the test weaving materials became flexible, surface became smoother, elasticity and volume characteristics indicated to have been improved. Consequently, the THV value of working clothes materials for test weaving was increased compared to existing materials which indicated improved result of the total hand value. Specially, the winter cloth material indicated improved drape characteristics and dimensional characteristics, showed improved liveliness as being compressed softly.

Longterm Aging Characteristics of Distribution Polymer Housed Surge Arresters by Multistress Accelerated Aging (복합 가속열화를 통한 배전용 고분자 피뢰기의 장기 열화특성 예측)

  • Kim, Ju-Yong;Kwon, Tae-Ho;Park, Chul-Bae;Kim, Joon-Eel
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.691-696
    • /
    • 2007
  • In this study accelerated aging test equipment was developed to simulate domestic weather condition for accelerated aging test of polymer housed distribution surge arresters. Polymer arresters were aged for 3,000 hours by this test equipment and chemical and electrical characteristics analysis of surge arresters were conducted after aging test. In addition, performance assessment of outdoor installed arresters for 3 years was conducted to compare aging effect between accelerated aging test and natural aging. Through this experiment it is verified that the capability of the proposed aging test for simulating natural aging and the housing material and disconnector of domestic polymer arresters can be deteriorated by the long time field operation.

A Study on Improvement of the low temperature flex resistance test method about high waterproof materials (고기능성 투습방수 소재의 저온굴곡 시험방법 개선 연구)

  • Lee, Minhee;Moon, Sunjeong;Ko, Hyeji;Hong, Seongdon
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.425-440
    • /
    • 2018
  • Purpose: This study is aimed at developing of the flex resistance testing process at low temperature with the waterproof fabric to suit the military environment, and is designed to fit for the purpose of the waterproof materials in order to optimize the test method by finding out matters to improve from existing the test method and through previous studies. Methods: The test method, which has been applied to flex resistance of existing water-repellent materials, was improved and consequently, differentiated test results could be obtained according to the test temperature, sample size, and flexing method. Results: The testing of the total of 8 samples revealed that performance of the military requirement could hardly be met just by presenting the materials or 2~3 layers when the quality criteria for high functional water repellent fabrics were applied. PTFE(Polytetrafluoroethylene) is preferred to PU(Polyurethane) to be used in the extremely low-temperature environment, but durability under the low-temperature environment may be varied depending on film thickness or laminating technique even if the materials of waterproof films are identical. Therefore, in addition to the material or texture, the test method capable of reflecting durability under the low-temperature environment shall be suggested, and the newly designed test method proposed in this study was shown to suggest differentiated quality criteria by the material. Conclusion: The water resistance measurement and the test method following flex resistance with expanded range of flex will enable the differentiable test of the samples according to the number of repetition. This study is meaningful in that it suggests a differentiable test method capable of establishing a basis of deciding suitable material when selecting military goods made of water repellent material by properly improving the test method.

Tensile Properties of CFRP Rod and U Type Anchor manufactured by UCAS Method (UCAS 공법에 의해서 제작된 CFRP rod와 U형 앵커의 인장특성)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Important material properties of UCAS rod can divide by tension characteristic of base rod part and both end part of U type anchor. Tensile properties of base rod part need as concrete reinforcement material as an alternative material of reinforcing rod, and tensile properties of U type anchor is used at connection with UCAS rod. This treatise carry out tensile test of UCAS rod, examine necessary properties such as strength, elastic modulus and maximum capacity of UCAS rod as reinforcement material of concrete. Also, to examine material properties carry out tensile test of U type anchor.

  • PDF

Performance Evaluation of Water Vapour Adsorption/Desorption Property for a Building Material by Mock up Test (실물시험을 통한 흡방습 건축자재의 성능평가)

  • Kim, Hea Jeong;Song, Kyoo Dong;Lee, Yun Gyu
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • There are increasing developments and uses of functional building materials are recently developed and introduced to the test method for the materials. Especially, moisture problem has a major role are also being established in indoor air quality problems. The purpose of this study is to evaluate the water vapour adsorption/desorption property of a ceiling material. The variation of the temperature and moisture were measured with the application materials by mock up test based on JIS 1470-1. The result shows that water vapour adsorption/desorption property of ceiling material is appeared in changes of moisture adsorption and desorption in comparison with that of a general ceiling material. Therefore, in case of decreasing and increasing in humidity, these materials can be used as an finishing material to sustain comfort condition.

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF