• Title/Summary/Keyword: material sensitivity

Search Result 1,378, Processing Time 0.028 seconds

Design of Rogowski coil to improve of current measurement sensitivity (전류측정감도 개선을 위한 로고우스키 코일의 설계)

  • Park, J. N.;Lee, C.;Jang, Y. M.;Kang, S. H.;Lim, K. J.;Na, D. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.609-612
    • /
    • 2001
  • Rogowski coil is made having no ferromagnetic material in a core. So the coil cannot be driven into saturation. This result in that Rogowski coils may be calibrated at relatively low currents, and used with confidence at very high currents. However the lowest level of current that can be measured is limited by the sensitivity of the voltage measuring instrument and system noise. Therefore, geometrical effects were investigated in order to measure high sensitivity of low level current and the significant source of error wa examined as well. n the results, the source of error was associated with coil designs, i.e. shape and uniformity of coil and a geometrical location of current source inside and outside of the Rogowski coil.

  • PDF

Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems (열전도 문제에 대한 3 차원 구조물의 위상 최적설계)

  • Moon Se-Joon;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

Temperature Characteristics of SDB SOI Hall Sensors (SDB SOI 흘 센서의 온도 특성)

  • 정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.227-229
    • /
    • 1995
  • Using thermal oxide SiO$_2$ as a dielectrical isolation layer, SOI Hall sensors without pn junction isolation have been fabricated on Si/SiO$_2$/Si structures. The SOI structure was formed by SDB (Si- wafer direct bonding) technology. The Hall voltage and the sensitivity of Si Hall devices implemented on the SDB SOI structure show good linearity with respect to the appled magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall device is average 600V/V.T. In the trmperature range of 25 to 300$^{\circ}C$, the shifts of TCO(Temperature Coefficient of the Offset Voltage) and TCS(Temperature Coefficient of the Product Sensitivity) are less than ${\pm}$ 6.7x10$\^$-3/ C and ${\pm}$8.2x10$\^$04/$^{\circ}C$, respectively. These results indicate that the SDB SOI structure has potential for the development of Hall sensors with a high-sensitivity and high-temperature operation.

  • PDF

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

Sensitivity Characteristics of Acoustic Emission(AE) Sensor using the Lead-free (Na1,K)NbO3 Ceramics (무연 (Na1,K)NbO3 계 세라믹스를 이용한 AE센서의 감도특성)

  • Yoo, Ju-Hyun;Lee, Gab-Soo;Hong, Jae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.218-222
    • /
    • 2007
  • In this study, Acoustic emission(AE) sensors were fabricated using lead-free piezoelectric ceramics for prohibiting environmental pollution. Structure of AE sensors were designed as Langvin type air backing form. Here, the piezoelectic element was used as PZT(EC-65)(AE1) and NKN(AE2), respectively. The measured resonant frequency, the maximum sensitivity frequency and sensitivity of AE sensors were as follows ; 143 kHz, 29.4 kHz and 69.3 dB in AE1 and 179 kHz, 29.4 kHz and 66.3dB in AE2, respectively.

A Study on the Chemiresistor Device characteristics of the CuTBP(Copper-tetra -tert-buthylphthalocyanine) LB films (CuTBT(Copper-tetra-tert-buthylphthalocyanine) LB막의 Chemiresistor Device 특성에 관한 연구)

  • 이창희;구자룡;김태완;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.6.2-8
    • /
    • 1996
  • The NO$_2$ GAS-detection characteristic of CuTBT (Copper-tetra-tert-butylphtha1ocyanine) LB films were investigated through a study of current-voltage (I-V) characteristics with a variation of number N of interdigital electrodes (N=1∼25). A concentration of 200ppm NO$_2$ gas was used. It was found that a conductance G increases monotonically as the number of interdigital electrode increases, and a sensitivity $\Delta$G ($\Delta$G=G$\_$gas//G$\_$air/) is at least higher than 50 and stable. As far as a sensitivity is concerned, the sensitivity when N=26 is greater than that when N=1 by 70 or so. It indicates that the number of interdigital electrodes affects the currents, sensitivity and stability.

A study on the NO$_2$ gas detector development using the CuTBP (Copper-tetra-te rt-butylphthalocyanine) chemiresistor device (CuTBP(Copper-tetra-tert-butylphthalocyanine) 화학 저항 장치를 이용한 NO$_2$ 가스 탐지기의 개발에 관한 연구)

  • 구자룡;이창희;김태완;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.417-420
    • /
    • 1996
  • We have investigated air/200ppm NO$_2$ gas-detector characteristics of using CuTBP (Copper-tetra-tert-butylphthalocyanine) chemiresistor devices. The CuTBP films were made by Langmuir-Blodgett (LB) techniques. Sensitivity, response time, recovery time, and repoducibility of the devices were measured by current-voltage characteristics. To increase sensitivity, interdigital electrode was used. It was found that a conductance G increases monotonically as the number of interdigital electrode increases, and a Sensitivity, Reproducibility is stable. As far as a current is concerned, the current when N=25 is greater than that when N=1 by 70 or so. It indicates that the number of interdigital electrodes affects the current, sensitivity and stability We have also investigated applicability of the CuTBP chemiresistor device for a gas detector.

  • PDF

Sensitivity Analysis of Rockfill Parameters Influencing Crest Displacements of CFRD Subjected to Earthquake Loading (지진하중을 받는 필댐 정부변위에 영향을 미치는 입력물성에 대한 민감도 분석)

  • Ha, Ik-Soo;Shin, Dong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.351-357
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam during earthquake loading with this input parameter. From the sensitivity analysis, it was found that the crest displacement of CFR type dam subjected to dynamic loading was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the extent of effect of shear modulus on the displacement at the crest of CFRD due to dynamic loading decreased as maximum amplitude of input acceleration increased.

  • PDF

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Study of High-k Sensing Membranes for the High Quality Electrolyte Insulator Semiconductor pH Sensor (High-k 감지막 평가를 통한 고성능 고감도의 Electrolyte-Insulator-Semiconductor pH센서 제작)

  • Bae, Tae-Eon;Jang, Hyun-June;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.125-128
    • /
    • 2012
  • We fabricated the electrolyte-insulator-semiconductor (EIS) devices with various high-k sensing membranes to realize a high quality pH sensor. The sensing properties of each high-k dielectric material were compared with those of conventional $SiO_2$ (O) and $SiO_2/Si_3N_4$ (ON) membranes. As a result, the high-k sensing membranes demonstrated better sensitivity and stability than the O and ON membranes. Especially, the $SiO_2/HfO_2$ (OH) stacked layer showed a high sensitivity and the $SiO_2/Al_2O_3$ (OA) stacked layer exhibited an excellent chemical stability. In conclusion, the high-k sensing membranes are expected to have excellent operating characteristics in terms of sensitivity and chemical stability for the biosensor application.