• Title/Summary/Keyword: material and geometric nonlinearity

Search Result 152, Processing Time 0.027 seconds

A Study on the Structural Characteristics of the Hollow Casket made of Silicon Rubber (실리콘 중공 가스켓의 구조적 특성에 관한 연구)

  • Lee, Seung-Ha;Lee, Tae-Won;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2044-2051
    • /
    • 2002
  • In this paper, the deformed shape, the contact forces and the load-displacement curves of the real hollow gasket made of silicon rubber are analyzed using a commercial finite element program MARC. In the numerical analysis, the silicon rubber is assumed to have the properties of the geometric and material nonlinearity and the incompressibility, and the hyperelastic constitutive relations of that material are represented by the generalized Mooney-Rivlin and Ogden models. The outer frictional contact between the hollow gasket and the groove of rigid container and the inner self-contact of the hollow gasket are taken into account in the course of numerical computation. Experiments are also performed to obtain the material data for numerical computation and to show the validity of the mechanical deformation of the hollow gasket, resulting in good agreements between them.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Geometric Nonlinear Analysis of Reinforced Concrete Beam-Columns (기하학적(幾何學的) 비선형성(非線形性)을 고려(考慮)한 철근(鐵筋)콘크리트 보-기둥의 해석(解析))

  • Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 1984
  • A numerical procedure based on the finite element method for the analysis of reinforced concrete beam-columns under uniaxial bending is presented. Material nonlinearities such as the cracking and crushing of concrete and the yielding of reinforcing steel as well as the geometric nonlinearity which is an important factor affecting the behavior of beam-columns are considered in the analysis. This method traces the behavior of reinforced concrete beam-columns up to failure by solving incremental equilibrium equations, Numerical examples are presented to demonstrate the validity and usefulness of the present method.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

Strength Prediction of Thick Composites with Fiber Waviness under Tensile/Compressive Load Using FEA (인장/압축 하중 하에서 FEA를 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 강도예측에 관한 연구)

  • 류근수;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.129-132
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. The effects of fiber waviness on tensile/compressive nonlinear elastic behavior and strength of thick composite with fiber waviness are studied theoretically and experimentally. FEA(Finite Element Analysis) models are proposed to predict tensile/compressive nonlinear behavior and strength of thick composites. In the FEA models, both material and geometric nonlinearities were incorporated into the model using energy density, iterative mapping and incremental method. Also Tsai-Wu criteria was adopted to predict the strength of thick composites with fiber waviness. Tensile and compressive tests were conducted on the specimens with uniform fiber waviness. It was observed that the degree of fiber waviness in composites significantly affected the nonlinear behavior and strength of the composites

  • PDF

A Study on the Optimal Initial Stress-Finding of Structures Stabilized by Cable-Tension (장력안정 구조물의 최적초기응력 탐색에 관한 연구)

  • 최옥훈;한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-294
    • /
    • 1999
  • The tensegrity structure by prestressed cable, which may have large freedom in scale and form and therefore are received much attention from the view points of their light weight and aesthetics, is a very flexible and geometrically unstable structure because the cable material has little initial rigidity. For the stable self-equilibrated state of the usually very deformable structure, the method to find the optimal initial stress by the shape analysis is proposed in this paper. The proposed procedure is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity and used to modified load incremental method adding to Newton-Raphson method with the proposed condition for optimal initial stress. The result of the shape analysis for the tensegrity structure with the radius of 30m is shown the almost approximated shape to architectural shape and the changed procedure of initial stress

  • PDF

Pull-in instability of electrically actuated poly-SiGe graded micro-beams

  • Jia, Xiao L.;Zhang, Shi M.;Yang, Jie;Kitipornchai, Sritawat
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.215-230
    • /
    • 2013
  • This paper investigates the pull-in instability of functionally graded poly-SiGe micro-beams under the combined electrostatic and intermolecular forces and temperature change. The exponential distribution model and Voigt model are used to analyze the functionally graded materials (FGMs). Principle of virtual work is used to derive the nonlinear governing differential equation which is then solved using differential quadrature method (DQM). A parametric study is conducted to show the significant effects of material composition, geometric nonlinearity, temperature change and intermolecular Casimir force.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.