• Title/Summary/Keyword: mass diffusion

Search Result 659, Processing Time 0.034 seconds

Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell (고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

A Study of the Measurement of Personal Activity on Online Marketing: Focus on SNS (온라인 마케팅 활동성 측정에 대한 연구- SNS 사용자 활동을 중심으로)

  • Kim, Sooeun;Kim, Eungdo
    • Knowledge Management Research
    • /
    • v.16 no.3
    • /
    • pp.81-102
    • /
    • 2015
  • With the rapid development of digital media, there has been a huge change in a way of communication, a process of information diffusion and a role of traditional media. Not like mass media, social media enables users to generate and tap into the opinions of a larger world. From that reason, social media is impacting marketing strategies. However, still social media marketing researches just focus on case study, analysis of users motivation or analysis of power user's usage pattern. Word-of-mouth has always been important especially in marketing area. In social media, word-of-mouth depends on each user that's why this research focuses on individual user's activity in SNS. I defined 4 factors (produce, diffusion, network size, activity of network size enlarge) that are effect on activity and verified hypothesis by multiple regression analysis, hierarchical regression analysis and moderated multiple regression.

KINETIC MODELING STUDY OF A VOLOXIDATION FOR THE PRODUCTION OF U3O8 POWDER FROM A UO2 PELLET

  • Jeong, Sang-Mun;Hur, Jin-Mok;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1073-1078
    • /
    • 2009
  • A kinetic model for the oxidation of a $UO_2$ pellet to $U_3O_8$ powder has been suggested by considering the mass transfer and the diffusion of oxygen molecules. The kinetic parameters were estimated by a fitting of the experimental data. The activation energies for the chemical reaction and the product layer diffusion were calculated from the kinetic model. The oxidation conversion of a $UO_2$ pellet was simulated at various operating conditions. The suggested model explains the oxidation behavior of $UO_2$ well.

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

Fabrication and Testing of Injection Mold for Cosmetic Container with Conformal Cooling Channels Using Vacuum Diffusion Bonding (진공확산접합을 이용한 형상적응형 냉각채널을 가진 화장품 용기용 사출금형의 제작 및 시험사출)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.92-98
    • /
    • 2020
  • In this study, an injection mold with conformal cooling channels was designed and manufactured for use in the production of a thick plastic cosmetic container that required high gloss surfaces. A cooling analysis verified the design of the conformal cooling channel for the cosmetic container, and also showed that the cooling efficiency was superior to that of the straight cooling channel. Slide cores designed with the conformal cooling channel were manufactured using the Layers Parting method and vacuum diffusion bonding. Subsequent test injection and quality inspection showed no problem in the appearance and dimensional accuracy of the produced product. The cycle time for product production was about 110 seconds, sufficient for mass production.

Numerical Study on Methane/Air Turbulent Jet Diffusion Flames Near-Extinction Using Conditional Moment Closure Model (CMC model에 의한 near-extinction methane/air turbulent jet diffusion flame의 수치적 모사)

  • Kang, Seung-Tak;Kim, Seung-Hyun;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.11-17
    • /
    • 2002
  • The first-order conditional moment closure (CMC) model is applied to $CH_4$/Air turbulent jet diffusion flames(Sandia Flame D, E and F). The flow and mixing fields are calculated by fast chemistry assumption and a beta function pdf for mixture fraction. Reacting scalar fields are calculated by elliptic CMC formulation. The results for Flame D show reasonable agreement with the measured conditional mean temperature and mass fractions of major species, although with discrepancy on the fuel rich side. The discrepancy tends to increase as the level of local extinction increases. Second-order CMC may be needed for better prediction of these near-extinction flames.

  • PDF

Theoretical Calculation of Parabolic Rate Constant for High-Temperature Oxidation of Metals (금속의 고온 산화동안 포물선 속도상수의 이론적 계산)

  • Kim, Insoo;Cho, Weol Dong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.282-285
    • /
    • 2001
  • Based on the mass balance of anion and cation fluxes, the parabolic rate constant ($K_p$) of oxide grown during the high-temperature oxidation of metal is theoretically calculated. It is assumed that the diffusion of oxygen anion and metal cation through oxide scale obeys the Fick's 1st law, the growth of oxide is controlled by the diffusion of ions, electrical potential gradient as driving force for diffusion of ions is ignored, and oxidation occurs within an existing oxide layer. Then, the parabolic rate constant can be expressed by $K_p=[2{\rho}_{MmOn}{M^2}_{MmOn}(mD_oC_o{^e}+nD_MC_M{^e})/nm]$.

  • PDF

Preferential Sorption and Its Role on Pervaporation of Organic Liquid Mixtures

  • 박현채;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.34-35
    • /
    • 1995
  • The unique feature of pervaporation is the mass transfer from a liquid phase to a vapor phase through a non-porous polymeric membrane. When a liquid mixture is brought into contact with a membrane at one side, it is sorbed into the membrane. Due to a driving force applied across the membrane, the sotbed liquid molecules permeate through the membrane and evaporate at the downstream side of the membrane. In pervaporation the permeated species are usually removed from the downstream side under a relatively low vapor pressure, for example by evacuation with a vacuum pump. As far as this condition is fulfilled, the evaporation step can be considered to be much faster than sorption or diffusion. Hence evaporation does not contribute to permselectivity. Therefore the separation by pervaporation results from the differences in the preferential sorption of the individual components of a mixture into the membrane together with the diffusion rates through the membrane. This postulation implies that both sorption and diffusion phenomena have to be accounted for to understand the physico-chemical nature of the pervaporation separation process.

  • PDF

The Characteristics of Soot at the Post-Flame Region in Jet Diffusion Flames Added Carbon Dioxide (이산화탄소가 첨가된 제트확산화염 후류에서의 매연 특성)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.9-13
    • /
    • 2010
  • An experimental study for characteristics of soot were conducted at the post-flame region in jet diffusion flames, where carbon dioxide was used as additives in oxidizer stream. Light-extinction method was performed using He-Ne laser with wave length at 632.8nm for the measurement of relative soot density and soot volume fraction with dimensionless extinction coefficient, $K_e$ and mass specific extinction coefficient, ${\sigma}_s$. To increase of resolution, laser light was modified for sheet-form using concave, convex lenses and slit. C/H ratio was introduced for quantitative analysis of soot growth which is expressed by carbonization and dehydrogen. Also transmission electron microscopy(TEM) was used for observation of morphological shape. The results show that the relative soot density in the post-flame region was lower when carbon dioxide was added in oxidizer stream because of reduction of flame temperature.

Interdiffusion at Interfaces of Binary Polymer Mixtures with Different Molecular Weights

  • 김운천;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1323-1328
    • /
    • 1999
  • Interdiffusion between two partially miscible polymers of similar chemical structures with different molecular weights is characterized theoretically by using the reptation model for the interdiffusion. This model provides more reliable results than the early Rouse model for same molecular weights, compared with the experiments. Furthermore, by introducing the molecular weight ratio R into the reptation model, we can see the dynamic effect of molecular weight on the diffusion behaviors of the asymmetric system. Near the critical point the diffusion behaviors of asymmetric binary polymer mixtures are well characterized by the interfacial width W(t), the mass transport M(t) for the different values of the Flory Χ parameter and different molecular weight ratios ofpolymers of the diffusion couple. These two quantities and composition profiles by this model give betteragreement with experiments.