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Interdiffusion between two partially miscible polymers of similar chemical structures with different molecular 
weights is characterized theoretically by using the reptation model for the interdiffusion. This model provides 
more reliable results than the early Rouse model for same molecular weights, compared with the experiments. 
Furthermore, by introducing the molecular weight ratio R into the reptation model, we can see the dynamic ef
fect of molecular weight on the diffusion behaviors of the asymmetric system. Near the critical point the diffu
sion behaviors of asymmetric binary polymer mixtures are well characterized by the interfacial width W(t), the 
mass transport M(t) for the different values of the Flory % parameter and different molecular weight ratios of 
polymers of the diffusion couple. These two quantities and composition profiles by this model give better 
agreement with experiments.

Introduction

Interdiffusion of polymers is a problem of considerable 
interest for both basic knowledge and applications. Polymer/ 
polymer interdiffusion affects the mechanical properties of 
polymers near interfaces. Applications include rubber-toug
hened polymer composites, welding of polymer interfaces, 
polymer adhension, and coating. Understanding of diffusion 
processes in polymers is a key to successful production of 
polymers and applications of polymer products in industry 
because the final properties of the polymer are determined 
by the thickness of the interface and the concentration pro
file of the two polymers across the interface. While mutual 
diffusion between miscible species is well understood,1 little 
is known about the kinetics of diffusional mixing between 
immiscible or partially miscible materials. This is of particu
lar relevance and has both basic and practical implications 
for the case of macromolecules, since most binary polymer 
pairs exhibit little compatibility at accessible temperatures.2 
Binary polymer mixtures are characterized by an upper criti
cal solution temperature, and will segregate at lower temper
atures into two coexisting phases separated by an interfacial 
region.3 Recently, there has been a lot of interest in the inter
diffusion of partly miscible and immiscible species. Typi
cally, one prepares a thin film rich in one of the species (say 
A) and a second thin film rich in the other species (say B) is 
brought on top of it. The broadening of the initially sharp 
concentration profile in time is of considerable interest. The 
various experimental techniques have been developed for 
this purpose.4-7 If polymers A and B are compatible, the ini
tial sharp interface will be smeared out as a result of the ordi
nary Fickian type diffusion. But two different polymers in 
contact do not in general interdiffuse freely, and an interfa
cial zone of finite width separates them at equilibrium.8-11 
This incompatibility stems from a very low combinational 
entropy of mixing which scales inversely with the degree of 
polymerization N together with interactions between the dif

ferent unfavorable monomers.3 The unfavorable molecular 
interactions between unlike molecules are N independent 
and remain comparable to those of analogous small molecu
lar mixtures.

Defining the interfacial width W as related to the recipro
cal of the maximal composition gradient across the A/B 
boundary, it was found that the thickness of the interface W 
increases with time slower than that of a Fickian process of 
W(t) x t1/2. As the opposite of phase separation, the mixing 
takes place via interdiffusion driven by thermodynamic 
forces. The transport phenomena in the bilayer were found 
to depend strongly on thermodynamic conditions such as 
temperature, interaction parameters between polymers A and 
B, and molecular weights of A and B. A mean-field approach12 
suggests that the exponent a of a scaling law W(t) x ta may 
be between % and % near the critical temperature. Klein and 
co-workers have obtained the first direct measurement of 
time-dependent composition profiles at an interface between 
two partially miscible polymers A and B (deuterated and 
protonated polystyrene).4,5 In the experiment of Klein and 
co-workers,5 a was found considerably smaller than the 
Fickian exponent %, falling between 0.25 and 0.5.

The value of a strongly depends on the definition by 
which the width W of the interface is measured. The defini
tion of maximal gradient is most sensitive to the local struc
ture of interface. A second meaningful characterization of 
interdiffusion is defining the amount of material M(t) of spe
cies A transported across the interface separating A and B as 
a function of time: M(t) x 伊.This definition is most insensi
tive to the local structure of the composition profile. Interdif- 
fusive behaviors of polymer mixtures can be characterized 
by following interfacial width, mass transport across the 
interface. Thus, we consider interdiffusion between pure 
polymer A and pure polymer B assuming the polymer layers 
are infinitely thick. Here, by using the reptation model for 
the interdiffusion, we study theoretically the binary polymer 
mixtures of similar (not same) chemical structure (% > 0) 
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with different molecular weights, and better agreement is 
found than the early Rouse model13 for same molecular 
weights if it is compared with experiments.4,5,6,24

Theory of Polymer Interdiffusion

A spatially homogeneous polymer mixture consisting of 
two polymer components A and B can be described approxi
mately by the mixing-ffee-energy function f (。)which is 
defined as follows according to the so-called mean-field the
ory. For the sake of simplicity, we consider the case that the 
volume of the mixture does not change upon mixing. The 
function f (0 ) is defined as the free energy per unit volume 
of the mixture. In the mean field theory for incompressible 
polymer mixtures of lengths Na and Nb, f (0) is given by

f(0) = 응 ln(0) + 늠-0ln( 1-0) + X0( 1-0) (1)
Na Nb

where 0 is the volume fraction of A and % is the Flory-Hug
gins parameter.3,14

The first two terms in Eq. (1) describe the combinatorial 
entropy while the third term accounts for segment-segment 
interaction energy. Since Na and Nb are large and the entropy 
of mixing is small, the thermodynamic driving force for 
mixing is very weak and a relatively small positive Flory % 
parameter is sufficient to make A and B phase-separate into 
A-rich and B-rich phases. For most A-B polymer pairs, % is 
positive and larger than Xc (critical value of % for segrega
tion), and segregation occurs. When the mixture phase-sepa
rates, interfaces are created between two phases. At phasic 
boundaries, polymers rearrange their conformations and 
repel chains of dissimilar species. This leads to an increase 
in free energy of both entropic and enthalpic origins. Let us 
now consider the case where the composition is not uniform. 
In this case, the free energy of the whole system can be 
described by the following form

F = J d^f(0( r,t)) + j(V0)2] (2)

The first term represents the contribution from each volume 
element. The second term, which is referred to as the Cahn- 
Hilliard interfacial energy,15,16 represents the cost of the free 
energy due to the presence of a concentration gradient when 
the composition is not uniform. The phenomenological 
parameter k has the dimension of length squared and plays 
an important role in control and formation of interfaces.

In general, depending on the initial conditions, polymers A 
and B may either demix through spinodal decomposition or 
interdiffuse into each other. When the system is near the crit
ical point for miscibility, mixtures cannot be perfectly phase- 
separated. In the same manner, polymers A and B will be 
partially mixed with each other via interdiffusion when pure 
A and pure B are put into contact. But the diffusion type will 
be different from the free-diffusion 产 relation. By the ther
modynamics the mixture cannot be mixed completely and a 
diffusion barrier exists. In our model, a sharp contact 
between two pure polymer layers A and B is arranged ini

tially. The thermodynamic driving forces compel the system 
to mix through the interfacial region.

Mass conservation of polymer species A gives the follow
ing time evolution equation for 0:

普 + V. Ja = 0 (3)

where the current is given by

JA = -A(0)V^ (4)
In Eq. (4), A(0) is a mutual mobility coefficient and 

depends on 0. The exchange chemical potential 仏 which is 
functional derivative of the free energy F given in Eq. (2),

/、- 8F[丄(r) =------ (5)
炒)§0(r- (5)

To derive the functional form of A(0) at a phenomenological 
level, we set the off-diagonal Onsager coefficients due to the 
hydrodynamic interaction to zero.17 The cross-coefficient or 
the Onsager coefficient of component A due to the gradient 
of component B is only important in systems with electro
static interactions. For interdiffusion in polymer pairs with
out ionic groups such as PVC/PMMA or PS/PVME, the 
cross-coefficients can be neglected.7 Thus, for highly entan
gled linear polymers A and B,

aa = 0A0N-，Ab = (1 - 0、)A0nN (6)
Na Nb

where Ao is a monomer mobility and Ne is the entanglement 
degree of polymerization for the polymers (Na, Nb >> Ne).17 
We here assume that the polymers A and B have same mono
mer mobility Ao. In this case, A(0) takes the form

Aa Ab _ 0( 1-0)A°N，

A(0) = AAF = Na{(1-0)+R0} ⑺

where R (=Nb/Na) represents the molecular weight ratio and 
Ao is assumed to be independent of 0 (r t).

The equilibrium theory 8,10,23 for the interfacial structure of 
incompatible polymer blends also produces a simple expres
sion for the parameter k(0 ) in Eq. (2) as

2 2 2
小、_ ^A t °B _ a 2、

k(0) = 0- + E = 0M0 (8)
where OA, OB, assumed to be independent of 0, are segment 
lengths of polymers A and B respectively. In Eq. (8), we let 
OA = OB = 시 where 시 is the characteristic length.11 This is 
almost true in the system which consists of protonated and 
deuterated polymers of the identical chemical structure. Eqs. 
(1)-(5) and (7) constitute the dynamic model for spinodal 
decomposition in polymer blends, first proposed by de 
Gennes.9,11 Now, the local chemical potential difference 卩(r 
t) is given by a functional derivative as usual

勺―— 1 性0、丄 1 V0V u (r t) = V ----c= - + -
皿r, 디 VS0-r,t- Na【0丿 楓1—0

2 寸3爪 
-2%V0 - 3点0

(9)
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In arriving at Eq. (9), we have neglected nonlinear terms 
involving (V 0 )3 and (V 0 ) V 20 . These terms are unimpor
tant at late stages of interdiffusion when the interface has 
suficiently broadened. Combining Eq. (4) and Eq. (7) with 
Eq. (9), the flux JA of species A across a plane fixed with 
respect to the initial sharp interface is obtained:

_ 0( 1- 0®，寸
A - Na{ 1-0) +R0}V (10)

where DA (=Ao N /Na2) is the self-diffusion coefficient of 
highly entangled linear polymer A in melt and K (=Na a2) has 
the magnitude of the square of the end-to-end distance in an 
unperturbed chain.

Like the interdiffusion taking place between two thin 
sheets of polymers A and B, let us consider a one dimen
sional transport along the x-axis normal to the plane of sheet. 
We write our model in dimensionless form via scaling length 
and time. The length is scaled by the natural length K and 
made conversion x t xK and the time is scaled with the 
unit t =2K/Da, which is on the order of the reptation time of 
a single chain in a melt, and made the transformation t t t/x. 
Finally the composition variable is redefined as w= 2(0 - %) 
so that the order parameter 1/ takes values between +1 (pure 
A) and -1 (pure B) as composition profile 0 drops from 1 to 
zero, and we have also made a change of notation: Na%t% 
where x = 2 in the critical point of the symmetric case (R = 
1). The resulting equation in terms of the rescaled variables 
is given by

绰=d\(—2—)

dt dx 1+ R + (R -1)/丿

(11)

The factor in front of d/dx in Eq. (11) describes a diffu
sion coefficient which represents N— dependence in the rep
tation model. The second term involving d // dx accounts 
for the presence of an interface separating two incompatible 
phases and moderates the structure formation because too 
steep gradients are thermodynamically disadvantageous.

is 350 K%. We take the initial interface of the bilayer system 
as 350Ax (=175 K%). The boundary conditions to solve the 
above diffusion equation are d/( x, t )/dx = 0 and 
d /(x,t)/dx = 0 at the outer two ends of the bilayer. Then, 
the system is allowed to evolve 105 time steps (= 103t) with 
an initial interfacial width of a reasonable magnitude as long 
as the boundary condition will remain valid.

A quantitative measure for the interfacial broadening is 
the interfacial width W(t) defined as the inverse of the slope 
at the point of the interface where the composition profile 
/(x) varies most rapidly:

W( t)= I伊-즈--))-2
|_( d^C 丿 max

d/( x=350A x, t=0 
dx

）丿t
(12)

where W(t) is given in units of K%. We take W(0) consider
ably smaller than W(00) to start the interdiffusion process on 
the computer. The mass transport M(t) of polymer A trans
ported from the left-hand side of the initial dividing surface 
to its right-hand side is calculated as

700 Ax
M( t) = C\ dx [ 1 + /(x, t)] (13)

J350Ax

where C is a proportionality constants. The mass transport 
depicts the overall profile of the composition field while the 
interfacial width reflects the local structure at the interface. It 
is expected that M(t) will increase with time slower than t% 
for the partially miscible couples of polymer blends because 
of the suppressed diffusion due to the “spinodal barrier”.

We have considered three values of % = 1.6, 1.7, 1.8, and 
four values of R = 1, 1.5, 2.0, 3.0. In the Flory-Huggins 
mean field model of polymer mixing, Xc is given by

〈1+R -x+(R- D 审+湖 뽀

= 아Na + 属 )2
Xc 2NaNb (14)

where Xc is the value of X at the critical temperature 7C. After 
we have made a change of notation NAXcTXc and NBNatR, 
the following expression for the Eq. (14) is obtained:

_ (1 + JR)2
X 2R一 (15)

In Eq. (15), Xc = 2 for the symmetric case (R = 1) and Xc = 
1.65, 1.46, 1.24 for R = 1.5, 2.0, 3.0, respectively.

Computation지 Methods

Eq. (11) is a non-linear equation for 0, and solving it gen
erally requires numerical computation obtained by discretiz
ing Eq. (11) with finite differences. Let us consider a bilayer 
of initially pure polymer A and polymer B where the left
hand side is occupied by A and the right-hand side by B. The 
evolution of the bilayer system starting from the initial pro
file of a step function is described by application of the stan
dard Crank-Nicholson method to update at every time step 
the profile described by Eq. (11). We discretize d/( x, t )/dt 
as (/in+1-/in)/At, d/(x,t)/dx as (/i+1n-/_1n)/2Ax, and simi
larly for its higher spatial derivatives with At = 0.01 and Ax = 
0.5. The total grid points are 700, so that the total thickness

Results and Discussion

Figure 1 shows the composition profiles of polymer A for 
a/B diffusion couples which were diffused at X = 1.6 for dif
fusion times, t, of 62, 250, 562, and 1000t in R = 2. This fig
ure shows that the composition profiles remain asymmetric 
as interdiffusion proceeds and the diffusion behaviors differ 
significantly from those for the symmetrical case.13 All the 
composition profile curves appear to intersect at a single 
point at the original interface. This means that the number of 
chains per unit area crossing the original interface instanta
neously reaches a constant value after a short reptation 
time.26 As we see in Figure 1, the lower molecular weight



1326 Bull. Korean Chem. Soc. 1999, Vol. 20, No. 11 Woon Chun Kim and Hyungsuk Pak

Figure 1. Time evolution of the composition profiles for % = 1.6 
and R = 2 at five different times. %c = 1.46 for R = 2. The time is 
expressed in units of T (=2K/DA) and length in units of 0.5 K1/2.

Figure 3. Natural log-log plots of the variation with time of the 
interfacial width for % = 1.6, 1.7, and 1.8 in R = 2. The solid lines 
are the linear fits that yield a.

chains A diffuse more deeply into the high molecular weight 
B than the high molecular weight chains B diffuse into the 
low molecular weight side of the diffusion couple because of 
the entanglement effects. Therefore, Figure 1 demonstrates 
that the composition profiles do not vary smoothly with 
depth. It decreases rapidly with depth from pure A to a value 
around i/V -0.5 but then much more slowly with depth as w 
decreases further. These behaviors are very similar to the 
experimental results of Figure 7 in ref 6 and Figure 4 in ref
25. The development of the interfacial width W(t) for R = 2 
at different values of % (=1.6, 1.7, and 1.8) is monitored 
against the square root of the time and shown in Figure 2. 
Because binary polymer mixtures are characterized by an 
upper critical solution temperature, %= 1.6, 1.7, and 1.8 are 
away from the critical point (%c = 1.46) toward one-phase 
region. Therefore, as the simulations of interdiffusion are 
carried out further away from the critical temperature which 
corresponds to %c = 1.46 for R = 2, the transport behaviors 
seems to be more non-Fickian. The exact behaviors will be 
characterized in detail at the following figures. We see 
clearly how the interfacial width increases at short time but 
then levels off to its limiting value in Figure 2. A more 
detailed examination of the time variation indicates that, fol
lowing an initial rapid increase, W(t) varies as a power of t 
markedly slower than 也 until it eventually levels out at its 
limiting value at sufficiently long times. These observations

、/t
Figure 2. Interfacial width W(t) against the square root of time for 
% = 1.6, 1.7, and 1.8 in R = 2. The units are the same as in Figure 1.

emphasize the complexity of the interfacial development 
kinetics at % > %c, and are in good agreement with the exper
imentally observed behaviors.4,5 These can be more clearly 
investigated in greater detail by searching for the power-law 
relation: W(t)〈乂 ta. Figure 3 shows the development with 
time of W(t) for R = 2 at three different values of %, on a dou
ble-natural-logarithmic plot. We can see the power-law-like 
increase of W(t) at short times, and leveling off to a constant 
value of W(t) at long times. The initial variation of the inter
facial width with time for t V 4.48t (log [t] V 1.5) is well rep
resented by the power-law relation. This power variation is 
significantly different from the iree-diflusion J~t relation. 
The solid lines in Figure 3 are the linear fits which yield the 
exponents a for the time development. The values of a are 
0.3436, 0.2936 and 0.2612 for x = 1.6, 1.7 and 1.8, respec
tively. We note that a is in all three cases significantly 
smaller than the exponent 0.5 for free interdiffusion. Further 
away from the critical point given by Xc = 1.46, the larger % 
value, the faster W(t) saturates and the smaller a in Figure 3. 
These results are in good agreement with a mean-field 
approach12 that, closer to the critical temperature, the expo-
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Figure 4. Natural log-log plots of the mass M(t) transported 
across the initial dividing surface for R = 2. The solid lines are the 
linear fits that yield g for t < 4.48t (log[t] < 1.5) and the details are 
given by inset. The dotted lines are the linear fits that yield g for 
4.48t < t < 1000T ( 1.5 < log[t] < 6.91)
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an experiment.5 Figure 4 shows the mass M(t) transported 
across the initial dividing surface with time for R = 2 at three 
different values of x, on a double-natural-logarithmic plot. 
The solid lines in Figure 4 are the linear fits that yield the 月 
for t < 4.48c (log[t] < 1.5) and the details are shown in inset 
to Figure 4. The dotted lines are the linear fits that yield 月 for 
4.48c<t< 1000c (1.5 <log[t] <6.91). The values of 月 in the 
solid lines are 0.3918, 0.3809 and 0.3701 for % = 1.6, 1.7, 
1.8, respectively and 0.4827, 0.4816, 0.4808 in the dotted 
lines for the same each % value. Still, the values of 月 stay 
within 0.25 and 0.5 but the values of 月 are greater than those 
of a. When we contrast two different quantities W(t) and 
M(t) that describe the same transport process, on the con
trary, the mass transport M(t) continues to increase with time 
without leveling off to its limiting value as shown in Figure
4. These contrasts of two quantities prove that the behaviors 
related to interfacial dynamics are significantly different 
from those concerned with mass transport. With more quan
titative analysis by comparing a with 月 during the same ini
tial period at three different values of %, both values of a and 
月 stay within 0.25 and 0.5. But, a decreases more steeply 
than 月 and the difference of two values increases, as % grows 
larger. This explains that the exponent a is more sensitive to 
local structure of the interface and to the value of % (=tem- 
perature) than the exponent 月. Summing up, these come to 
the following result. The interfacial width W(t) well charac
terizes the initial process of interdiffusion while the mass 
transport M(t) well characterize the entire transport process 
and interdifussion in the late stage. From now, we will inves
tigate the interdiffusion at the constant % value (=tempera- 
ture), varing the molecular weight ratio of the diffusion 
couple. The composition profiles of lower molecuar weight 
polymers A diffusing into higher molecular weight polymers 
B computed numerically for several molecular weight ratios 
of B to A at t = 1000c and % = 1.7, are shown in Figure 5. 
The molecular weight ratio R (=N/NA) is 1, 1.5, 2, and 3. As 
R becomes more than 1, the curves approach an asymptotic 
shape which is quite different from that obtained when R = 1 
(Na=Nb). As the length of polymer A is shorter than that of 
polymer B, the polymer A diffuse more deeply into the poly
mer B rich phase because of the chain entanglement in Fig-

Figure 6. Interfacial width W(t) against the square root of time for 
R = 1.5, 2 and 3 in % = 1.7. The units are the same as in Figure 1.

ure 5. These shapes are similar to the simulated results of 
Figure 2 in ref 24. The development of W(t) with time 
between coexisting homopolymer A-homopolymer B bilay
ers for % = 1.7 at different molecular weight ratios (R = 1.5, 
2, and 3) is monitored and shown in Figure 6. The natural 
log-log plots of variation with time of the interfacial width at 
% = 1.7 for different values of R, are presented in Figure 7. 
The solid lines in Figure 7 are the linear fits that yield a for 
the initial period of time. The value of a is 0.3708, 0.2935 
and 0.2638 for R =1.5, 2 and 3 respectively. The mass trans
port M(t) across the initial dividing surface for % = 1.7 is 
shown in Figure 8. The solid lines are also the linear fits that 
yield the 月 for t < 4.48c (log[t] < 1.5) and the details are 
given by inset to Figure 8. The dotted lines are the linear fits 
that yield 月 for 4.48c < t < 1000c (1.5 < log[t] < 6.91). As 
expected, all the values of a and 月 are also between % and % 
in Figure 7 and 8. As the value of R is larger than 1, diffusion 
behaviors are more non-Fickian and values of a and 月 are 
less than % of free-diffusion. However,月 is less influenced 
by the molecular weight ratio R than a. Comparing Figure 7 
with Figure 3, we are able to conclude that the interfacial 
width W(t) is most sensitive to the local structure of the 
interface and much more affected by both the % (=tempera- 
ture) and the molecular weight ratio R, while the mass trans
port M(t) is most insensitive to the local structure and much

Figure 5. The composition profiles computed for Nb/Na = 1, 1.5, 
2, and 3 at t = 1000c and % = 1.7. The units are the same as in 
Figure 1.

Figure 7. Natural log-log plots of variation with time of the 
interfacial width for % = 1.7. The solid lines are the linear fits that 
yield a.
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Figure 8. Natural log-log plots of the mass M(t) transported 
across the initial dividing surface for R = 1.5, 2.0 and 3.0 in % = 1.7. 
The solid lines are the linear fits that yield p for t V 4.48c ( log[t] V 
1.5) and the details are given by inset. The dotted lines are the 
linear fits that yield P for 4.48c V t V 1000c (1.5 V log[t] V 6.91).

less influenced by both % and R. Furthermore, the interfacial 
width W(t) can be used only in the early stage of the interdif
fusion as a monitor of the interdiffusion process, while the 
mass transport M(t) provides a characterization of the entire 
interdiffusion process including the late stage, in the asym
metric case (R * 1) as well as in symmetric case13 (R = 1). In 
Figure 7 and 8, the values of a and p for R =1.5 are 0.3708 
and 0.3952 respectively and they are relatively close to 0.5 
(free diffusion) because % = 1.7 is near the critical point for 
complete mixing (%c = 1.65 for R = 1.5).

Conclusion

We have demonstrated that our model describes well the 
diffusion behaviors not only for different molecular weight 
ratio R at constant % (=temperature) but also for different 
values of % at fixed molecular weight ratio R ( * 1), and our 
predictions agree well with available experimental data. 
Adopting the molecular weight ratio R (=Nb /Na) and entan
glement effect of mutual mobility into the symmetric Rouse 
model in ref 13, we can get the asymmetric diffusion behav
iors of polymer mixture and obtain the dynamic effects of 
the molecular weight ratio R and the temperature (=x) on the 
interdiffusion through the interfacial width W(t) and the 
mass transport M(t). Therefore, we are able to study more 
exact behaviors of interdiffusion and more reliable compari
son with experiments between two partially miscible poly
mer species with different molecular weights from a 
theoretical viewpoint. This model gives better description 
and agreement than the previous Rouse model13 with same 
molecular weights in order to compare their model with 

experiments of entangled binary polymer mixtures with dif
ferent molecular weights. In conclusion, our model can be 
well applied to the highly entangled binary polymer mix
tures of deuterated and protonated species of the identical 
chemical structure with different molecular weights.
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