Preferential Sorption and Its Role on Pervaporation of Organic Liquid Mixtures

  • 박현채 (한국과학기술연구원, 고분자연구부) ;
  • 김은영 (한국과학기술연구원, 고분자연구부)
  • Published : 1995.04.01

Abstract

The unique feature of pervaporation is the mass transfer from a liquid phase to a vapor phase through a non-porous polymeric membrane. When a liquid mixture is brought into contact with a membrane at one side, it is sorbed into the membrane. Due to a driving force applied across the membrane, the sotbed liquid molecules permeate through the membrane and evaporate at the downstream side of the membrane. In pervaporation the permeated species are usually removed from the downstream side under a relatively low vapor pressure, for example by evacuation with a vacuum pump. As far as this condition is fulfilled, the evaporation step can be considered to be much faster than sorption or diffusion. Hence evaporation does not contribute to permselectivity. Therefore the separation by pervaporation results from the differences in the preferential sorption of the individual components of a mixture into the membrane together with the diffusion rates through the membrane. This postulation implies that both sorption and diffusion phenomena have to be accounted for to understand the physico-chemical nature of the pervaporation separation process.

Keywords