• Title/Summary/Keyword: mass concrete

Search Result 881, Processing Time 0.03 seconds

An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 -)

  • Park, Heung-Lee;Ki, Jun-Do;Kim, Sung-Jin;Lee, Hoi-Keun;Park, Byung-Keun;Jung, Jang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

An Experimental Study on the Hydration Heat Control of Mass Concrete Using Heat Pipe (히트파이프를 이용한 매스콘크리트의 수화열 제어에 관한 실험 연구)

  • BaeK, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.81-86
    • /
    • 2007
  • In order to eliminate the hydration heat of mass concrete, this paper reports the results of hydration heat control in mass concrete using the OCHP (Oscillating capillary tube heat pipe). In the summarized results of the mock up experiments, distributing the heat pipe at 300 mm intervals based on the center of the test specimen was the most effective. A 200 mm turn interval for the heat pipe was measured to be the most appropriate, taking into account the reinforcement placing at the actual site. Therefore, when the hydration heat control method using the heat pipe developed in this study is applied, not only canconstruction efficiency & a reduction in the necessary construction time be expected, but so can outstanding economical effects.

Mock-up Test on the Utilization of CGS Fine Aggregate in Low Heat Mixture of Mass Concrete (매스콘크리트 저발열 배합의 CGS 잔골재 활용에 관한 Mock-up 시험)

  • Han, Jun-Hui;Lim, Gun-Su;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.97-98
    • /
    • 2022
  • In this study, conducted a Mock-up test on the use of TBC and CGS fine aggregates for the purpose of reducing the upper and lower hydration heat according to the horizontal division and punching of mass concrete. As a result of the experiment, it is judged that it will be effective in preventing temperature cracking of mass concrete when mixing the upper and lower parts and replacing CGS.

  • PDF

Field Application of Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (수화발열량차 및 단열양생 공법을 활용한 매스콘크리트의 현장적용)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.227-228
    • /
    • 2023
  • This study is tocompare and analyze the results of hydration heat analysis and on-field measurements using the method with hydration heat difference and insulation curing method for controlling hydration heat in mass concrete. As a result of the analysis, the temperature difference between the center and the surface was predicted very similarly, and the mass concrete surface was controlled to a safe level when evaluating with a temperature crack index, and after being finished, it was confirmed that there was no hydration crack.

  • PDF

A Study on the Choice of Optimal Mixtures and Sensibility Properties of High Strength Concrete and Mass Concrete to apply the High Rising Building (초고층구조물에 적용하기 위한 고강도콘크리트 및 매스콘크리트의 최적배합선정 및 민감도특성에 관한 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.153-159
    • /
    • 2005
  • This study is to choose the optimal mixture and to analyze the sensibility properties of High strength concrete and mass concrete to apply the high rising building. The main experimental variables were water/binder ratio $39\%,\;33\%,\;35\%\;and\;37\%$, replacement ratio of fly ash $5\%,\;10\%\;and\;15\%$, in the high strength concrete and water/binder ratio $39\%,\;41\%\;and\;43\%$, replacement ratio of fly ash $10\%,\;20\%\;and\;30\%$, in the man concrete. According to the test results, the principal conclusions are summarized as follows. 1) The slump(or slump flow) and air content of fresh concrete were found to be the highest in the elapsed time 30 minutes. 2) The optimal mixture conditions are W/B $40\%$, FA $25\%$ in the mass concrete and W/B $33.4\%$, FA $15\%$ in the high strength concrete. 3) The ranges of sensibility are satisfied in the moisture content ${\pm}l\%\;and\;S/a\;{\pm}2\%$.

Study on Precooling of Concrete Using Ice and Cooling Water (얼음과 냉각수를 이용한 콘크리트의 프리쿨링에 관한 연구)

  • 정철헌;박장호;이순환
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2000
  • Crack control due to temperature is an important factor for the mass concrete structure. Pre-cooling is the effective system to reduce the highest temperature of mass concrete. In this study, for pre-cooling, cooling water, cooling water with ics flake are used. The results of a series of experimental studies indicate that the changes in properties of fresh concrete after cooling are of low degree, and compressive strength of concrete is changed very little by cooling. The adiabatic temperature rise is also measured with pre-cooling concrete specimens. It is shown that hydration heat characteristics of cement and concrete were largely affected by pre-cooling.

Thermal stress and pore pressure development in microwave heated concrete

  • Akbarnezhad, A.;Ong, K.C.G.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.425-443
    • /
    • 2011
  • Most previous studies have generally overlooked the contribution of thermal stresses generated within the concrete mass when subjected to microwave heating and reported on pore-pressure as being the dominant cause of surface spalling. Also, the variation in electromagnetic properties of concrete and its effects on the microwave heating process have not been studied in detail. In this paper, finite element modeling is used to examine the simultaneous development of compressive thermal stresses and pore-pressure arising from the microwave heating of concrete. A modified Lambert's Law formulation is proposed to estimate the microwave power dissipation in the concrete mass. Moreover, the effects of frequency and concrete water content on the concrete heating rate and pattern are investigated. Results show high compressive stresses being generated especially in concrete with a high water content when heated by microwaves of higher frequencies. The results also reveal that the water content of concrete plays a crucial role in the microwave heating process.

Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production (고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구)

  • Jaung, Jae-Dong;Cho, Hyun-Dae;Park, Seung-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • Recently, the interest and demand for large-scale buildings and skyscrapers have been on the rise, and the performance of concrete is an area of high priority. Securing 'mass concrete and high strength concrete' is very important as a key construction technology. For high strength concrete, the high heat of hydration takes place inside the concrete because of the vitality of hydration in cement due to the large amount of powder, and leads to problems such as an increase of thermal stress due to the temperature difference with the outside, which results in cracks and slump loss. For this reason, measures to solve these problems are needed. This study aims to reduce the hydration heat of high strength concrete to control the hydration heat of mass concrete and high strength concrete, by replacing the type of admixture, The purpose of this study is to control the hydration heat of high strength concrete and mass concrete. Our idea for this purpose is to apply not only the types and contents of admixture but also incorporation mixing water to ice-flake. As a result of the test, the use of blast furnace slag and fly ash as admixture, and the use of ice-flake as mixing water can improve the liquidity of concrete and reduce slump loss. Significantly dropping the maximum temperature will contribute greatly to reducing cracks due to hydration heat in mass concrete and high strength concrete, and improve quality.

Field Application of Setting Time Difference Method Using SRA for Reduction of Hydration Heat of Mass Concrete (매스콘크리트의 수화열저감을 위한 초지연제 응결시간차 공법의 현장 적용 -대전 가오지구 코오롱 하늘채 아파트 현장-)

  • Jeon Chung-Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.21-24
    • /
    • 2005
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Daejeon. Horizontal placing lift is applied. According to test results,: slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. For temperature history, maximum temperature of center at top section shows $25.6^{\circ}C$, and at bottom section, $35.4^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF

Properties of Hydration Heat and Autogenous Shrinkage of High-Strength Mass Concrete with Latent Heat Material (잠열재를 사용한 고강도 매스 콘크리트의 수화열 및 자기수축 특성)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.315-316
    • /
    • 2009
  • In this study, latent heat material was used to reduce hydration heating velocity of high-strength mass concrete. And the properties of hydration heat and autogenous shrinkage, and the relationship between hydration heat and autogenous shrinkage of high-strength mass concrete were numerically investigated.

  • PDF