• Title/Summary/Keyword: marker selection

Search Result 510, Processing Time 0.031 seconds

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Identification of Genetic Markers Distinguishing Golden Flounders from Normal Olive Flounders Paralichthys olivaceus Using Microsatellite Markers (황금색 넙치(Paralichthys olivaceus)의 발현을 예측할 수 있는 Microsatellite Marker 개발)

  • Kim, Min Sung;Kwak, Ju Ri;Kim, Tae Hwan;Han, Jae Yong;Park, Ji Been;Jo, Hyeon Kyeong;Suh, Jong-pyo;Lee, Woo-jai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.492-498
    • /
    • 2020
  • Despite its economic importance, olive flounder Paralichthys olivaceus aquaculture industry is facing a crisis with a continuous production decline. There have been many solutions to overcome the complicate predicament proposed. Increasing genetic diversity and discovering new commercial value through selective breeding are among them. The aims of the present study are to increase the selection power of the golden flounders. We examined the genetic diversity of the breeder population of golden flounders and developed selective markers for the golden flounder population. The 6 microsatellite (MS) markers were selected from melanogenesis-related genes, which are believed to be involved in the pigmentation of fish. All markers were polymorphic (except PO4) and 5 of them had PIC value of 0.6 or above. All makers had distinctive alleles indicating either normal or golden individuals. For examples, from PO4 marker, the frequency of an allele (316) in the golden population was 100% and in normal population was 0% (P<0.001). Although some more studies with more samples at the later generations should be performed to confirm this result, the 316 allele from PO4 marker could be a distinctive tool for decision of the colors in olive flounders at an early stage of the life cycle.

Current Research Status for Economically Important Candidate Genes and Microarray Studies in Cattle (소의 경제형질 관련 후보 유전자 및 Microarray 연구현황)

  • 유성란;이준헌
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.169-190
    • /
    • 2006
  • Researches in livestock are currently actively progressing to improve economically important traits using DNA markers. In cattle, the candidate genes have been selected based on their known functions in the target QTL (quantitative trait locus) region in order to identify QTN (quantitative trait nucleotide) for improving productivities. In this review, molecular genetic studies for the meat related traits, one of the major determinant of market prices, have been fully described. Also recent emerging microarray technique for identifying candidate genes in cattle has been discussed. In case of microarray, cDNA microarrays have been replaced to oligoarrays in order to minimize the experimental errors in cattle. Since the first draft of bovine genome sequences was appeared in the public domain, more markers in relation to the quantitative traits will be discovered in a short period of time and genes affecting difficult-to-measure traits, such as disease resistance, can also be selected for marker assisted selection in near future.

Study on identification of candidate DNA marker related with beef quailty in QTL region of BTA 2 in Hanwoo population (한우 2번 염색체 양적형질좌위 영역에서 육질 연관 후보 DNA 마커 규명에 관한 연구)

  • Lee, Yoon-Seok;Oh, Dong-Yep;Yeo, Jung-Sou
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.661-669
    • /
    • 2011
  • By direct sequencing of 12 STS marker, we identified 10 polymorphic SNPs. As a result of genotype frequency analysis between 10 polymorphic SNPs and extreme population (n=20) for marbling score in Hanwoo (n=233), there was over 40 percent of frequency difference of HWSNP_1-1 and HWSNP_9-4 SNP. HWSNP_1-1 SNP was significantly associated with marbling score in large-scale population (n=233). Therefore we suggested that HWSNP_1-1 SNP can be useful as a positional candidate for beef quality for marker-assisted selection in Hanwoo.

Genetic Variation in Sprout-related Traits and Microsatellite DNA Loci of Soybean

  • Lee, Suk-Ha;Kyujung Van;Kim, Moon-Young;Gwag, Jae-Gyun;Bae, Kyung-Geun;Oh, Young-Jin;Kim, Kyong-Ho;Park, Ho-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.413-418
    • /
    • 2003
  • Genetic diversity and soybean sprout-related traits were evaluated in a total of 72 soybean accessions (60 Glycine max, 7 Glycine soja, and 5 Glycine gracilis). 100-seed weight (SW) was greatly varied and ranged from 3.2g to 32.3g in 72 soybean accessions. Positive correlation was observed between GR and hypocotyl length (HL), whereas negative correlation was observed between SW and hypocotyl diameter (HD). Re-evaluation by discarding two soybean genotypes characterized with low GR indicated that much higher correlation of sprout yield (SY) with HD and SW. Based on the principal component analysis (PCA) for sprout-related traits, 57 accessions were classified. Soybean genotypes with better traits for sprout, such as small size of seeds and high SY, were characterized with high PCA 1 and PCA 2 values. The seed size in second is small but showed low GR and SY, whereas the third has large seed, high GR and more than 400% SY. In genetic similarity analysis using 60 SSR marker genotyping, 72 accessions were classified into three major and several minor groups. Nine of twelve accessions that were identified as the representatives of soybean for sprout based on PCA were in a group by the SSR marker analysis, indicating the SSR marker selection of parental genotypes for soybean sprout improvement program.

Genome-wide association study identifies positional candidate genes affecting back fat thickness trait in pigs

  • Lee, Jae-Bong;Kang, Ho-Chan;Kim, Eun-Ho;Kim, Yoon-Joo;Yoo, Chae-Kyoung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.707-713
    • /
    • 2018
  • This study was done to search for positional candidate genes associated with the back fat thickness trait using a Genome-Wide Association Study (GWAS) in purebred Yorkshires (N = 1755). Genotype and phenotype analyses were done for 1,642 samples. As a result of the associations with back fat thickness using the Gemma program (ver. 0.93), when the genome-wide suggestive threshold was determined using the Bonferroni method ($p=1.61{\times}10^{-5}$), the single nucleotide polymorphism (SNP) markers with suggestive significance were identified in 1 SNP marker on chromosome 2 (MARC0053928; $p=3.65{\times}10^{-6}$), 2 SNP markers on chromosome 14 (ALGA0083078; $p=7.85{\times}10^{-6}$, INRA0048453; $p=1.27{\times}10^{-5}$), and 1 SNP marker on chromosome 18 (ALGA0120564; $p=1.44{\times}10^{-5}$). We could select positional candidate genes (KCNQ1, DOCK1, LOC106506151, and LOC110257583), located close to the SNP markers. Among these, we identified a potassium voltage-gated channel subfamily Q member gene (KCNQ1) and the dedicator of cytokinesis 1 (DOCK1) gene associated with obesity and Type-2 diabetes. The SNPs and haplotypes of the KCNQ1 and DOCK1 genes can contribute to understanding the genetic structure of back fat thickness. Additionally, it may provide basic data regarding marker assisted selection for a meat quality trait in pigs.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Modified CTAB DNA Methods for efficient DNA extraction from Rice (Oryza sativa L.) (벼 분자육종을 위한 CTAB DNA 추출 시스템 개량)

  • Lee, Jong-Hee;Kwak, Do-Yeon;Yeo, Un-Sang;Kim, Choon-Song;Jeon, Myeong-Gi;Kang, Jong-Rae;Park, Dong-Soo;Shin, Mun-Sik;Oh, Byeong-Geun;Hwang, Hung-goo
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.286-290
    • /
    • 2008
  • Many important traits have been tagged allowing plant breeders to apply marker assisted selection (MAS) in rice. PCR itself is simple to set up, and requires little hands-on time. However, a crucial limiting step of MAS programs is the reliable and efficient extraction of DNA which can be performed on thousands of individuals. In this study, We describe a modification of the DNA extraction method, in which cetyltrimethylammonium bromide (CTAB) is used to extract DNA from leaf tissues for suitable MAS in rice. We followed the standard 2% CTAB extraction method in all the procedure. In addition we used the 1.2 ml 8-strip tube instead of 1.5 ml E-tubes to fit the 8-multichannel pipette and employ the 96 well plate to use the swing bucket centrifuge. Our modified CTAB DNA extraction method offers several advantages with respect to traditional and simple methods. 1) adult leaf samples collected in paddy field are applicable. 2) 96 leaf samples can be homogenized only one-time by using tungsten carbonate bead and 96well block. 3) semiautomatic loading method using 8-multichannel pipette from DNA extraction to electrophoresis of PCR products. 4) our system can extract about 400 leaf samples per day by only one technicion. Therefore, this method could be useful for marker assisted breeding in rice.

Transgene structures of marker-free transgenic Bt rice plants (무선발 형질전환 Bt벼의 도입유전자 구조 분석)

  • Woo, Hee-Jong;Lee, Seung Bum;Lim, Myung-Ho;Gwon, Sun-Jong;Lee, Jin-Hyoung;Shin, Kong-Sik;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • A less simple approach developed for generation of marker-free transgenic plants is to select transformants without the use of selective marker genes. Some results about development of marker-free transgenic plants were obtained using a non-selective approach in several crops such as rice, potato and tobacco. However, the study did not provide evidence on detailed characterization of introduced gene on genome, a critical step for confirming the stable integration and transmission of a foreign gene. In this study, we evaluated structure and integration sites of transgene (mCry1Ac) in the transgenic Bt rice plants which were made via conventional Agrobacterium-mediated transformation by non-selective method. Structure and integration sites of transgene in these transgenic plants had similar fashion as those recovered under selection.

Sampling and Selection Factors that Enhance the Diversity of Microbial Collections: Application to Biopesticide Development

  • Park, Jun-Kyung;Lee, Seung-Hwan;Lee, Jang-Hoon;Han, Songhee;Kang, Hunseung;Kim, Jin-Cheol;Kim, Young Cheol;McSpadden Gardener, Brian
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.144-153
    • /
    • 2013
  • Diverse bacteria are known to colonize plants. However, only a small fraction of that diversity has been evaluated for their biopesticide potential. To date, the criteria for sampling and selection in such bioprospecting endeavors have not been systematically evaluated in terms of the relative amount of diversity they provide for analysis. The present study aimed to enhance the success of bioprospecting efforts by increasing the diversity while removing the genotypic redundancy often present in large collections of bacteria. We developed a multivariate sampling and marker-based selection strategy that significantly increase the diversity of bacteria recovered from plants. In doing so, we quantified the effects of varying sampling intensity, media composition, incubation conditions, plant species, and soil source on the diversity of recovered isolates. Subsequent sequencing and high-throughput phenotypic analyses of a small fraction of the collected isolates revealed that this approach led to the recovery of over a dozen rare and, to date, poorly characterized genera of plant-associated bacteria with significant biopesticide activities. Overall, the sampling and selection approach described led to an approximately 5-fold improvement in efficiency and the recovery of several novel strains of bacteria with significant biopesticide potential.