Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.7.855

Recent Strategy for Superior Horses  

Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.7, 2016 , pp. 855-867 More about this Journal
Abstract
The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.
Keywords
Genetic marker; GWAS (Genome-wide Association study); horse; NGS technologies; racing ability;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahn, K., Bae, J. H., Gim, J. A., Lee, J. R., Jung, Y. D., Park, K. D., Han, K., Cho, B. W. and Kim, H. S. 2013. Identification and characterization of transposable elements inserted into the coding sequences of horse genes. Genes Genom. 35, 483-489.   DOI
2 Doan, R., Cohen, N. D., Sawyer, J., Ghaffari, N., Johnson, C. D. and Dindot, S. V. 2012. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare. BMC Genomics 13, 78.   DOI
3 Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J. and Loewer, S., et al. 2009. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350-1353.   DOI
4 Eivers, S. S., McGivney, B. A., Fonseca, R. G., MacHugh, D. E., Menson, K., Park, S. D., Rivero, J. L., Taylor, C. T., Katz, L. M. and Hill, E. W. 2010. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics 40, 83-93.   DOI
5 Eivers, S. S., McGivney, B. A., Gu, J., MacHugh, D. E., Katz, L. M. and Hill, E. W. 2012. PGC-1alpha encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Anim. Genet. 43, 153-162.   DOI
6 Ellegren, H., Johansson, M., Sandberg, K. and Andersson, L. 1992. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23, 133-142.
7 Ahn, K., Bae, J. H., Nam, K. H., Lee, C. E., Park, K. D., Lee, H. K., Cho, B. W. and Kim, H. S. 2011. Identification of reference genes for normalization of gene expression in thoroughbred and Jeju native horse (Jeju pony) tissues. Genes Genom. 33, 245-250.   DOI
8 Ahn, K., Gim, J. A., Ha, H. S., Han, K. and Kim, H. S. 2013. The novel MER transposon-derived miRNAs in human genome. Gene 512, 422-428.   DOI
9 Andersson, L. S., Larhammar, M., Memic, F., Wootz, H., Schwochow, D., Rubin, C. J., Patra, K., Arnason, T., Wellbring, L. and Hjalm, G., et al. 2012. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488, 642-646.   DOI
10 Barres, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O′Gorman, D. J. and Zierath, J. R. 2012. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405-411.   DOI
11 Binns, M. M., Boehler, D. A. and Lambert, D. H. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim. Genet. 41 Suppl 2, 154-158.   DOI
12 Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21.   DOI
13 Bower, M. A., McGivney, B. A., Campana, M. G., Gu, J., Andersson, L. S., Barrett, E., Davis, C. R., Mikko, S., Stock, F. and Voronkova, V., et al. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 3, 643.   DOI
14 Brooks, S. A., Gabreski, N., Miller, D., Brisbin, A., Brown, H. E., Streeter, C., Mezey, J., Cook, D. and Antczak, D. F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 6, e1000909.   DOI
15 Garcia-Etxebarria, K. and Jugo, B. M. 2012. Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 434, 59-67.   DOI
16 Encode Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.   DOI
17 Faller, M. and Guo, F. 2008. MicroRNA biogenesis: there′s more than one way to skin a cat. Biochim. Biophys. Acta 1779, 663-667.   DOI
18 Fuchs, N. V., Loewer, S., Daley, G. Q., Izsvák, Z., Löwer, J. and Löwer, R. 2013. Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 10, 115.   DOI
19 Gim, J. A., Ayarpadikannan, S., Eo, J., Kwon, Y. J., Choi, Y., Lee, H. K., Park, K. D., Yang, Y. M., Cho, B. W. and Kim, H. S. 2014. Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 547, 152-158.   DOI
20 Gimenez, J., Montgiraud, C., Oriol, G., Pichon, J. P., Ruel, K., Tsatsaris, V., Gerbaud, P., Frendo, J. L., Evain-Brion, D. and Mallet, F. 2009. Comparative methylation of ERVWE1/syncytin-1 and other human endogenous retrovirus LTRs in placenta tissues. DNA Res. 16, 195-211.   DOI
21 Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F. and Massabanda, J., et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74.   DOI
22 Grossi Ddo, A., Buzanskas, M. E., Grupioni, N. V., de Paz, C. C., Regitano, L. C., de Alencar, M. M., Schenkel, F. S. and Munari, D. P. 2015. Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle. Mol. Biol. Rep. 42, 245-251.   DOI
23 Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silvestrelli, M. and Supplizi, A. V. 2008. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9, 49.   DOI
24 Brown, K., Moreton, J., Malla, S., Aboobaker, A. A., Emes, R. D. and Tarlinton, R. E. 2012. Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing. Virology 433, 55-63.   DOI
25 Capomaccio, S., Verini-Supplizi, A., Galla, G., Vitulo, N., Barcaccia, G., Felicetti, M., Silvestrelli, M. and Cappelli, K. 2010. Transcription of LINE-derived sequences in exercise-induced stress in horses. Anim. Genet. 41 Suppl 2, 23-27.   DOI
26 Cappelli, K., Felicetti, M., Capomaccio, S., Nocelli, C., Silvestrelli, M. and Verini-Supplizi, A. 2013. Effect of training status on immune defence related gene expression in Thoroughbred: are genes ready for the sprint? Vet. J. 195, 373-376.   DOI
27 Cho, H. W., Park, J. W., Choi, J. Y., Choi, J. Y., Sivakumar, S., Kim, N. Y., Shin, T. S., Cho, S. K., Kim, B. W. and Cho, B. W. 2014. Identification of equine heat shock proteins gene and their mRNA expression analysis after exercise. J. Life Sci. 24, 105-111.   DOI
28 Cieslak, M., Pruvost, M., Benecke, N., Hofreiter, M., Morales, A., Reissmann, M. and Ludwig, A. 2010. Origin and history of mitochondrial DNA lineages in domestic horses. PLoS One 5, e15311.   DOI
29 Coleman, S. J., Zeng, Z., Hestand, M. S., Liu, J. and Macleod, J. N. 2013. Analysis of unannotated equine transcripts identified by mRNA sequencing. PLoS One 8, e70125.   DOI
30 Gu, J., Orr, N., Park, S. D., Katz, L. M., Sulimova, G., MacHugh, D. E. and Hill, E. W. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4, e5767.   DOI
31 Hauser, S., Wulfken, L. M., Holdenrieder, S., Moritz, R., Ohlmann, C. H., Jung, V., Becker, F., Herrmann, E., Walgenbach-Brünagel, G. and von Ruecker, A. 2012. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 36, 391-394.   DOI
32 Hill, E. W., Gu, J. J., Eivers, S. S., Fonseca, R. G., McGivney, B. A., Govindarajan, P., Orr, N., Katz, L. M. and MacHugh, D. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5.
33 Hori, Y., Ozaki, T., Yamada, Y., Tozaki, T., Kim, H. S., Takimoto, A., Endo, M., Manabe, N., Inoue-Murayama, M. and Fujita, K. 2013. Breed differences in dopamine receptor D4 gene (DRD4) in horses. J. Equine Sci. 24, 31-36.   DOI
34 Hu, Y., Xu, H., Li, Z., Zheng, X., Jia, X., Nie, Q. and Zhang, X. 2013. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 8, e56411.   DOI
35 Huang, J., Zhao, Y., Shiraigol, W., Li, B., Bai, D., Ye, W., Daidiikhuu, D., Yang, L., Jin, B. and Zhao, Q., et al. 2014. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci. Rep. 4, 4958.
36 Huh, J. W., Ha, H. S., Kim, D. S. and Kim, H. S. 2008. Placenta-restricted expression of LTR-derived NOS3. Placenta 29, 602-608.   DOI
37 International Chicken Genome Sequencing, C. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716.   DOI
38 Desjardin, C., Vaiman, A., Mata, X., Legendre, R., Laubier, J., Kennedy, S. P., Laloe, D., Barrey, E., Jacques, C. and Cribiu, E. P., et al. 2014. Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology. BMC Genomics 15, 798.   DOI
39 Coleman, S. J., Zeng, Z., Wang, K., Luo, S., Khrebtukova, I., Mienaltowski, M. J., Schroth, G. P., Liu, J. and MacLeod, J. N. 2010. Structural annotation of equine protein-coding genes determined by mRNA sequencing. Anim. Genet. 41 Suppl 2, 121-130.   DOI
40 Dall′Olio, S., Wang, Y., Sartori, C., Fontanesi, L. and Mantovani, R. 2014. Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livest. Sci. 160, 29-36.   DOI
41 Dewannieux, M. and Heidmann, T. 2013. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3, 646-656.   DOI
42 Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B. Y., Ahn, H., Moon, S., Cho, S. and Do, K. T., et al. 2013. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res. 20, 287-298.   DOI
43 Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M. and Webster, M., et al. 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178-186.   DOI
44 Jin, L., Jiang, Z., Xia, Y., Lou, P., Chen, L., Wang, H., Bai, L., Xie, Y., Liu, Y. and Li, W., et al. 2014. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genomics 15, 653.   DOI
45 Kazazian, H. H., Jr. and Moran, J. V. 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19, 19-24.   DOI
46 Kim, M. C., Lee, S. W., Ryu, D. Y., Cui, F. J., Bhak, J. and Kim, Y. 2014. Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing. PLoS One 9, e93662.   DOI
47 Kozomara, A. and Griffiths-Jones, S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-D73.   DOI
48 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. and FitzHugh, W., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
49 Lee, J. R., Hong, C. P., Moon, J. W., Jung, Y. D., Kim, D. S., Kim, T. H., Gim, J. A., Bae, J. H., Choi, Y. and Eo, J., et al. 2014. Genome-wide analysis of DNA methylation patterns in horse. BMC Genomics 15, 598.   DOI
50 Lee, R. C., Feinbaum, R. L. and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.   DOI
51 Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.   DOI
52 Lee, Y. J., Park, S. H., Bae, E. H. and Jung, Y. T. 2012. Characterization of molecular clones of porcine endogenous retrovirus-A containing different numbers of U3 repeat boxes in the long terminal repeat region. J. Virol. Methods 181, 103-108.   DOI
53 Li, T. H. and Schmid, C. W. 2001. Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276, 135-141.   DOI
54 Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z. and Ngo, Q. M., et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.   DOI
55 Manghera, M. and Douville, R. N. 2013. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 10, 16.   DOI
56 Mata, X., Vaiman, A., Ducasse, A., Diribarne, M., Schibler, L. and Guerin, G. 2012. Genomic structure, polymorphism and expression of the horse alpha-actinin-3 gene. Gene 491, 20-24.   DOI
57 Mattiske, S., Suetani, R. J., Neilsen, P. M. and Callen, D. F. 2012. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1236-1243.   DOI
58 Moon, J. W., Ahn, K., Bae, J. H., Nam, G. H., Cho, B. W., Park, K. D., Lee, H. K., Yang, Y. M., Kim, T. H. and Seong, H. H. 2012. mRNA sequence analysis and quantitative expression of the ADAMTS4 gene in the thoroughbred horse. Genes Genom. 34, 441-445.   DOI
59 McGivney, B. A., Eivers, S. S., MacHugh, D. E., MacLeod, J. N., O'Gorman, G. M., Park, S. D., Katz, L. M. and Hill, E. W. 2009. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 10, 638.   DOI
60 Mienaltowski, M. J., Huang, L., Stromberg, A. J. and MacLeod, J. N. 2008. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet. Disord. 9, 149.   DOI
61 Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G. and Ostrander, E. A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79.   DOI
62 Murray, R. C., Smith, R. K., Henson, F. M. and Goodship, A. 2001. The distribution of cartilage oligomeric matrix protein (COMP) in equine carpal articular cartilage and its variation with exercise and cartilage deterioration. Vet. J. 162, 121-128.   DOI
63 Nam, G. H., Ahn, K., Bae, J. H., Cho, B. W., Park, K. D., Lee, H. K., Yang, Y. M., Kim, T. H., Seong, H. H. and Han, K. 2012. Identification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 gene. Gene 496, 45-48.   DOI
64 Oliver, K. R. and Greene, W. K. 2009. Transposable elements: powerful facilitators of evolution. Bioessays 31, 703-714.   DOI
65 Pace, J. K., 2nd and Feschotte, C. 2007. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422-432.   DOI
66 Perepelitsa-Belancio, V. and Deininger, P. 2003. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363-366.   DOI
67 Park, K. D., Park, J., Ko, J., Kim, B. C., Kim, H. S., Ahn, K., Do, K. T., Choi, H., Kim, H. M. and Song, S., et al. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13, 473.   DOI
68 Park, W., Kim, J., Kim, H. J., Choi, J., Park, J. W., Cho, H. W., Kim, B. W., Park, M. H., Shin, T. S. and Cho, S. K., et al. 2014. Investigation of de novo unique differentially expressed genes related to evolution in exercise response during domestication in Thoroughbred race horses. PLoS One 9, e91418.   DOI
69 Peffers, M., Liu, X. and Clegg, P. 2013. Transcriptomic signatures in cartilage ageing. Arthritis Res. Ther. 15, R98.   DOI
70 Perron, H., Germi, R., Bernard, C., Garcia-Montojo, M., Deluen, C., Farinelli, L., Faucard, R., Veas, F., Stefas, I. and Fabriek, B. O. 2012. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult. Scler. J. 18, 1721-1736.   DOI
71 Petersen, J. L., Mickelson, J. R., Rendahl, A. K., Valberg, S. J., Andersson, L. S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M. M. and Borges, A. S., et al. 2013. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 9, e1003211.   DOI
72 Piriyapongsa, J., Polavarapu, N., Borodovsky, M. and McDonald, J. 2007. Exonization of the LTR transposable elements in human genome. BMC Genomics 8, 291.   DOI
73 Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F. and Lee, S. J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688.   DOI
74 Potocki, L., Lewinska, A., Klukowska-Rotzler, J., Bugno-Poniewierska, M., Koch, C., Mahlmann, K., Janda, J. and Wnuk, M. 2012. DNA hypomethylation and oxidative stress-mediated increase in genomic instability in equine sarcoid-derived fibroblasts. Biochimie 94, 2013-2024.   DOI
75 Rivero, J. L. L., Ruz, A., Martí-Korff, S., Estepa, J. C., Aguilera-Tejero, E., Werkman, J., Sobotta, M. and Lindner, A. 2007. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses. J. Appl. Physiol. 102, 1871-1882.   DOI
76 Schook, L. B., Beever, J. E., Rogers, J., Humphray, S., Archibald, A., Chardon, P., Milan, D., Rohrer, G. and Eversole, K. 2005. Swine Genome Sequencing Consortium(SGSC): a strategic roadmap for sequencing the pig genome. Comp. Funct. Genom. 6, 251-255.   DOI
77 Sela, N., Mersch, B., Hotz-Wagenblatt, A. and Ast, G. 2010. Characteristics of transposable element exonization within human and mouse. PLoS One 5, e10907.   DOI
78 Smalheiser, N. R. and Torvik, V. I. 2005. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322-326.   DOI
79 Stengel, S., Fiebig, U., Kurth, R. and Denner, J. 2010. Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49, 401-411.   DOI
80 Strazzullo, M., Corteggio, A., Altamura, G., Francioso, R., Roperto, F., D'Esposito, M. and Borzacchiello, G. 2012. Molecular and epigenetic analysis of the fragile histidine triad tumour suppressor gene in equine sarcoids. BMC Vet. Res. 8, 30.   DOI
81 Thiruvenkadan, A., Kandasamy, N. and Panneerselvam, S. 2009. Inheritance of racing performance of Thoroughbred horses. Livest. Sci. 121, 308-326.   DOI
82 Strillacci, M., Frigo, E., Schiavini, F., Samore, A., Canavesi, F., Vevey, M., Cozzi, M., Soller, M., Lipkin, E. and Bagnato, A. 2014. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet. 15, 106.
83 Szabo, G., Dallmann, G., Muller, G., Patthy, L., Soller, M. and Varga, L. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm. Genome 9, 671-672.   DOI
84 Tang, W., Gunn, T. M., McLaughlin, D. F., Barsh, G. S., Schlossman, S. F. and Duke-Cohan, J. S. 2000. Secreted and membrane attractin result from alternative splicing of the human ATRN gene. Proc. Natl. Acad. Sci. USA 97, 6025-6030.   DOI
85 Trakovická, A., Gábor, M., Miluchová, M., Minarovič, T. and Štastná, D. 2012. Analysis of the Nebulin-Related Anchoring Protein Gene (NRAP) SNP Polymorphism(C/T) in Slovak Warmblood Horse by PCR-RFLP Method. Sci. Pap. Anim. Sci. Biotechnol. 45, 265-268.
86 van der Kuyl, A. C. 2011. Characterization of a full-length endogenous beta-retrovirus, EqERV-beta1, in the genome of the horse (Equus caballus). Viruses 3, 620-628.   DOI
87 Wade, C. M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T. L., Adelson, D. L., Bailey, E. and Bellone, R. R., et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867.   DOI
88 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M. and Panaud, O., et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982.   DOI
89 Wnuk, M., Lewinska, A., Gurgul, A., Zabek, T., Potocki, L., Oklejewicz, B., Bugno-Poniewierska, M., Wegrzyn, M. and Slota, E. 2014. Changes in DNA methylation patterns and repetitive sequences in blood lymphocytes of aged horses. Age 36, 31-48.   DOI
90 Witt, S. H., Kleindienst, N., Frank, J., Treutlein, J., Muhleisen, T., Degenhardt, F., Jungkunz, M., Krumm, B., Cichon, S. and Tadic, A., et al. 2014. Analysis of genome-wide significant bipolar disorder genes in borderline personality disorder. Psychiatr. Genet. 24, 262-265.   DOI
91 Zabek, T., Semik, E., Wnuk, M., Fornal, A., Gurgul, A. and Bugno-Poniewierska, M. 2015. Epigenetic structure and the role of polymorphism in the shaping of DNA methylation patterns of equine OAS1 locus. J. Appl. Genet. 56, 231-238.   DOI
92 Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L. and Li, Y., et al. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131.   DOI
93 Zimin, A. V., Delcher, A. L., Florea, L., Kelley, D. R., Schatz, M. C., Puiu, D., Hanrahan, F., Pertea, G., Van Tassell, C. P. and Sonstegard, T. S., et al. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10, R42.   DOI